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Editura Universităţii Transilvania din Braşov
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Foreword

This book is based on the work started in 2007 together with Noël Richard
from the XLIM-SIC Laboratory, Université de Poitiers, France. It repre-
sents however my personal point of view on the topic of the current book,
specifically the probabilistic approach and the analysis of the color images
using the RGB color model.

The book is organized as follows: Chapter 1 is an introduction on color
and multispectral texture images; Chapter 2 talks about fractal models that
can be used to model color and multispectral texture images. The models
can be used both for the purpose of texture image synthesis and analy-
sis. Chapters 3 and 4 are focused on feature extraction for texture image
characterization, mainly fractal features and morphological features (from
the mathematical morphology point of view). Chapter 5 is dedicated to
applications, especially image segmentation, with a section on texture dis-
crimination and classification.

This book is my habilitation thesis and the support material for future
candidates to the Ph.D. title, as a common ground between them and their
future mentor. The reader should be familiar with the domains of fractal
analysis and mathematical morhpology. Some references are suggested for
both prior and further reading: H.O. Peitgen The Beauty of Fractals, P.
Soille Mathematical morphology and image analysis.

I would like to thank Noël Richard for the support and all the most
interesting and fruitfull discussions. To my doctoral students Alexandru
Căliman and Radu Coliban - the former one defended his thesis in November
2013, the latter one is currently pursuing the Ph.D. title. Some of the results
from this book are due to their work. Last but not least, to my student
Ştefan Popa for the proofreading of this book.

Mihai Ivanovici, Braşov, Transilvania, 2015
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Chapter 1

Color and multispectral
texture images

Texture represents the variation of the signal or image data at scales smaller
than the scale of interest, according to [96]. Textures can be regular, semi-
regular and irregular (see Figure 1.1). In other words, they can be deter-
ministic or stochastic. In the regular ones, a texture element called texel
repeats itself periodically, forming a deterministic structure. The irregu-
lar textures do not posses such an element, they are composed of random
variations of the signal. The intermediate class of semi-regular textures can
be described by texels which have random location or size. Most natural
textures are irregular. For the stochatic textures the presence of visible and
well-identified texels lacks, but certain statistical features (e.g. statistical
moments) remain constant or invariant, consequently some author consider
textures as being stationay random fields.

(a) Regular (b) Semi-regular (c) Irregular

Figure 1.1: Types of textures.

The notion of texture emerged in the 60-70s in the context of analysis
of gray-scale images that present certain variations at object surface that
rendered difficult the task of image segmentation. According to Haralick
[53], human beings use three types of features for interpreting color images:
spectral, textural and contextual features. The texture features contain
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2 CHAPTER 1. COLOR AND MULTISPECTRAL TEXTURE IMAGES

information about the spatial arrangement of pixel values. Texture can be
described using terms like fine, coarse or smooth, rippled, molled, irregular
or lineated [53]. Most of the features focus on only one aspect of gray
scale texture images, like contrast or coarseness. Color information or color
features are sometimes concatenated with texture features for the purpose
of classification, in order to boost the correct classification rate.

Haralick introduced in [53] the gray-tone spatial-dependence matrices,
also known as gray-level cooccurrence matrices, as a way to characterize tex-
ture. Based on these matrices he proposed 14 texture features regarding ho-
mogeneity, contrast, number and nature of boundaries, and the complexity
of image. Various texture characterization have been proposed since then
and in [117] the existing techniques were classified as being: geometrical,
statistical, image model-based methods and signal processing approaches.
The geometrical methods aim at describing the regular and semi-regular
textures by the shape and position or the texels [96], thus being based on
detection of the texture elements and the recovering of their spatial distribu-
tion. The statistical aproaches are usually based on second-order statistics
or the auto-correlation function [53]; these are suited for the analysis of
irregular textures as well. The model-based methods use a mathematical
model to describe the analyzed image like fractals [93] or Markow random
fields [33], which can also be used for synthesizing the texture images. The
signal processing approaches include the usage of filters to extract informa-
tion from textures, e.g. Gabor filters [65], Laws filters [72], or non-linear
filters from mathematical morphology [114].

In this book we dedicate our attention to the notion of complexity, in the
context of texture image analysis. The etymology of the word itself, from
the Latin word complex meaning “twisted together” designating a system
composed of closely-connected components, indicates that the complexity
integrates or should be able to integrate various aspects of the under-study
object - the texture in our case. There exist various definitions of complex-
ity, including Kolmogorov complexity and entropy. Recently, N. Richard
and myself proposed a new Technical Committee within Division 8 of CIE
entitled Specification of Spatio-Chromatic Complexity and it was approved
as TC 8-14. Its objective is to produce a single definition of spatio-chromatic
complexity embedding the spatial and chromatic variations in a generic and
vector form, based on the existing definitions of the complexity and the in-
tegration of various aspects of non-uniform surfaces, generally denoted as
textures. Following this line of thought, in this book we focus on a fractal
point of view to texture analysis (see the following two chapters). Together
with such an integrative approach and point of view, we stress out the im-
portance of vector processing, as opposed to marginal analysis.

Various texture image databases have been constructed for the purpose
of testing translation, rotation, scale and illuminant-invariant feature ex-
traction or classification approaches. Two of the most used and well-known
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texture image data-bases are Outex [89] and VisTex1. A subset of the VisTex
data-base in presented in Figure 1.2.

Figure 1.2: Various color textures from the VisTex data base.

Color images are vector images, usually represented using the RGB color
space used for image acquisition. The information represent lambdas in
the visible spectrum (roughly from 380 nm to 700 nm). There are several
elements of particular interest when we take color into consideration for
the analysis of texture images: metamers, human perception... Color can
be treated independently of the texture information, see for instances ap-
proaches where the color features were concatenated with texture features
for the purpose of improving the classification task, of treated vectorial (see
full-band or vector processing). Recently, there is a high interest in multi-
spectral and hyperspectral imaging techniques.

The multispectral imaging refers to the techniques used for image data
acquisition at various wavelengths across the electromagnetic spectrum, in-
cluding those beyond the visible range. The result is an n-dimensional or
multivariate image that reveals additional information compared to visible-
spectrum images. The multispectral images are an invaluable source of in-
formation in a wide range of domains, especially for agriculture, since they
allow to emphasize or assess various aspects such as vegetation status, soil
humidity, etc. Starting with the first Landsat satellite system, there is a
clear trend in equipping satellites with multispectral instruments.

See for instance in Figure 1.3 several bands of a multispectral image from
the CAVE2 data-base, Columbia University, New York. The multispectral
images from this data-base have 31 bands, from 400 nm to 700 nm, in steps of

1http://vismod.media.mit.edu/vismod/imagery/VisionTexture/
2http://www.cs.columbia.edu/CAVE/databases/multispectral/
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10 nm. The RGB image is rendered based on the multispectral information.

(a) 400nm (b) 450nm (c) 500nm (d) 550nm

(e) 600nm (f) 650nm (g) 700nm (h) RGB

Figure 1.3: Various lambdas and the RGB pompoms image from CAVE
database.

Take for instance the four color points in the Pompoms image in Figure
1.3. The corresponding spectral signatures are depicted in Figure 1.4.

Figure 1.4: Crop of the Pompoms image and the multispectral signatures of
the four highlighted pixels.

Apart from CAV, several open-access multispectral image data-bases of
multispectral images are available from University of East Anglia, United
Kingdom3, Brno University of Technology, Czech Republic4 or the Joint
Research Center, the Institute for Environment and Sustainability5. The

3http://www2.cmp.uea.ac.uk/Research/compvis/MultiSpectralDB.htm
4http://splab.cz/en/download/databaze/multispec
5http://image2000.jrc.ec.europa.eu/DI/IM.htm
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latter one called IMAGE2000 contains satellite images Europe produced by
the instrument on Landsat 7.

We would like to emphasize the fact that multivariate or n-dimensional
models obtained by a generalization of the ones existing for gray scale im-
ages do not always perfectly suit color or multispectral information: n-
dimensional Euclidian spaces may not be used, because of the high correla-
tion between various bands of the color or multispectral images. Take for
instance the example in Figure 1.5 - a natural color texture representing a
sugar beet crop.

(a) Sugar beet crop (b) 3D RGB histogram

(c) RGB histogram (d) Reflectance

Figure 1.5: Sugar beet texture image example.

The sugar beet example shows that there is high reflectance in the IR
and NIR domain, the spectral signature being characteristic for vegetation.
In Chaper 2 in a first approach we make the assumption that there is in-
dependence between the color components of the generated synthetic color
texture, but this is clearly false for natural ones. However, the hypothesis
of independence between color components or spectral bands helped us to
generate highly complex textures that can be used as references for valida-
tion and calibration of various complexity estimation methods or features.
In order to model natural texture images this hypothesis has to be adapted,
so that a certain correlation is introduced between various spectral bands.



6 CHAPTER 1. COLOR AND MULTISPECTRAL TEXTURE IMAGES



Chapter 2

Fractal models

Within the context of Euclidian geometry, objects (i.e. geometrical figures)
are completely described by formulae and have a characteristic size or scale.
Unfortunately, Euclidian geometry cannot model natural complex shapes.
Fractal geometry was introduced by B. Mandelbrot in 1983 [79] in order to
describe self-similar sets called fractals. In fractal geometry the objects are
usually generated by a recursive algorithm and they cannot be described
by one formula, and in addition do not have a specific size or scale. Frac-
tal models proved to be of great importance and usefulness for computer
graphics and digital image processing and analysis. However, all the ex-
isting approaches for fractal image analysis are defined for one dimensional
signals or binary images, with extension to gray-scale images. In order to
develop and validate new tools for color image analysis, it would be very
useful to have synthetic color fractal images with known properties.

Fractal objects are self-similar and independent of scale. Self similarity
is a central concept of the fractal geometry, being closely connected to the
notion of dimension and implicitly to complexity. The fractal or similarity
dimension is a quantitative measure of the wiggliness of a fractal object
[93]. The irregularities of a fractal object determine a fractal dimension
comprised in the interval [E,E+1], where E is the topological dimension of
the object. The fractal dimension will be discussed in detail in Chapter 3.
Fractals can be classified in two major categories: (i) deterministic fractals,
which are composed of several scaled down and rotated copies of themselves
(e.g. von Koch snowflakes, Sierpinski gaskets and Julia sets); and (ii) random
fractals, for which an additional randomness is included and they are used
to simulate natural phenomena. In this chapter we focus on various models
of random fractals, which are of particular interest for the texture image
analysis domain.

Fractal models are used for the generation of synthetic textures, shapes
and landscapes in computer graphics or to model natural phenomena. Frac-
tals are usually represented as black and white binary images, like gray-scale

7



8 CHAPTER 2. FRACTAL MODELS

images or pseudo-colored images. For the uniform fractals (also called pure
fractals), the fractal dimension can be computed in a precise manner. The
non-uniform random fractals are usually represented as 2D surfaces or gray-
level images and the fractal dimension is estimated based on a distribution of
increments. For the generation of fractal sets there exist several approaches.
From the plethora of algorithms we embraced the one of random fractal
generation, mainly Brownian fractional noise generation.

Random fractals can be modeled as Brownian noise or motion. By defi-
nition, Brownian motion is the integral of a Gaussian white noise w(t):

vB(t) =

tˆ

−∞
w(s)ds (2.1)

There are mainly three approaches for the generation of fractional Brow-
nian motion: (i) random midpoint displacement—a recursive generating
technique applied by N. Wiener in the 1920s; (ii) the Fourier Transform
filtering approach and (iii) the random cut method. All these techniques
are fully described in [93]. In this chapter we focus on the random midpoint
displacement algorithm and its extension to the color image domain.

2.1 Midpoint displacement algorithm

The technique called displacing interpolated points of generating fractional
Brownian motion was proposed by Saupe in [93] and it represents a gen-
eralization of the random midpoint displacement method, introduced by
Fournier et al [42]. In the 1-dimensional case, a signal X(t) is a fractional
Brownian motion function if the increments X(t1)−X(t2) represent Gaus-
sian zero-mean random variables and the variance of the increments is di-
rectly proportional to the |t1 − t2| distance:

|X(t2)−X(t1)|2 ∝ |t2 − t1|2H (2.2)

where H ∈ [0, 1] is the Hurst coefficient controlling the complexity of
the fractal being generated. The parameter H characterizes the scaling
behavior and it’s in the range 0 < H < 1: a value close to 0 indicates a
rough structure, while a value close to 1 indicates a smooth one [93]. The
relationship between the fractal dimension D, the dimension of the space E
and the parameter H is the following: D = E + 1−H.

The idea of the random midpoint displacement algorithm is to construct
the increments in an recursive process, such as the increment is reduced by
a factor 2 at each level. In the algorithm described by Saupe, the signal
is generated starting from X(0) = 0 and selecting X(1) as a sample of a
Gaussian random variable with mean 0 and variance σ2. Thus, the values
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of the signal are generated in the [0, 1] interval and they have to meet the
condition:

|X(t2)−X(t1)|2 = |t2 − t1|2Hσ2, ∀ 0 ≤ t1 ≤ t2 ≤ 1 (2.3)

which is a particularization of (2.2). The name of midpoint displacement
comes from the fact that at every iteration step a point is generated for every
pair of existent consecutive points in the function, in the midle of the interval
determined by them. Thus, at the first step, one point is generated at t = 1

2 ,
at the second step, two points are generated at t = 1

4 and t = 3
4 and so on

(see Figure 2.1). The points are generated as the average of the generating
points plus a sample of a Gaussian random variable Di with mean zero and
variance Δ2

i , where i is the iteration number.

Figure 2.1: Midpoint displacement algorithm illustration.

In the first iteration step, we have:

X

(
1

2

)
=

1

2
(X(0) +X(1)) +D1 (2.4)

where D1 is a zero mean Gaussian random variable with variance Δ2
1.

In order to compute Δ2
1, we use the equation (2.3):

∣∣∣∣X
(
1

2

)
−X(0)

∣∣∣∣
2

=

(
1

2

)2H

σ2 (2.5)

But

∣∣∣∣X
(
1

2

)
−X(0)

∣∣∣∣
2

=

∣∣∣∣12(X(1)−X(0)) +D1

∣∣∣∣
2

=
1

4
|X(1)−X(0)|2 + |D1|2

=
1

4
σ2 +Δ2

1

because X(1)−X(0) and D1 are uncorrelated. Consequently,
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Δ2
1 =

σ2

22H
(
1− 22H−2

)
(2.6)

In the second iteration step we obtain a random variable D2 with the
variance:

Δ2
2 =

σ2

42H
(1− 22H−2) (2.7)

and as a general relation, we obtain:

Δ2
n =

σ2

(2n)2H
(
1− 22H−2

)
(2.8)

The algorithm can be easily extended to higher dimensional signal gen-
eration, for X(p)-type functions, where p is an n-dimensional vector, by
changing the domain of the X function and the interpolation operations
from R to R

n. However, for a digital synthetic image generation, the do-
main is Z

2, and the co-domain consists of a bounded integer points set, so
the normalization of the generated values and the integer quantization steps
have to be taken into consideration in the fractal dimension estimation.

In the case of images, we start with the corners (marked with circles in
Figure 2.2 left), then we compute the central pixel (marker with a square),
then we continue with the points market with triangles and iteratively or re-
cursively as indicated in Figure 2.2 right until all pixel values are computed.

Figure 2.2: 2D midpoint displacement algorithm illustration.

To control the texture complexity along the scale, the variance σ2
i of the

increments must be proportional to (rn)2H for a Gaussian random variable—
the luminance in the case of a gray scale image [93]:

σ2
i = |X(t1, t2)−X(s1, s2)|2 ∝

(
2∑

i=1

(ti − si)
2

)H

(2.9)

where X(si, ti) denotes a random process, a function of two spatial co-
ordinates, si and ti. For a gray scale image, X(si, ti) is the value of the
luminance of each pixel of the image, while for a color image is the color of
the pixel, thus a vectorial value.
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2.2 Extension to color

A color image does not represent a 5D Euclidian form, as a pure or de-
terministic fractal with known properties does. In order to design a color
fractal image generator, we extended in [63] the random midpoint displace-
ment method from gray-scale [93] to color domain. We chose to work in the
RGB color space because it exhibits a cubic organization coherent with the
construction of the fractal object. In this way, we could reach the constraint
of the expression in a five-dimensional Euclidian space. However, any other
color space obtained through linear transformations could be used, and we
also generated color fractal images using the HSV color space.

In the case of an RGB color image, the increments are differences between
two 3D vectors, in the sense of the Euclidian distance. The variance of these
increments is:

σ2
i =

⎛
⎝√ ∑

k=r,g,b

(Xk(t1, t2)−Xk(s1, s2))
2

⎞
⎠

2

(2.10)

σ2
i = [Xr(t1, t2)−Xr(s1, s2)]

2 + [Xg(t1, t2)−Xg(s1, s2)]
2 + · · ·

· · ·+ [Xb(t1, t2)−Xb(s1, s2)]
2

(2.11)

In the hypothesis that the increments in the three RGB planes are sta-
tistically independent, i.e. the color stimuli on the three channels are not
correlated, we can distribute the statistical operation to each term:

σ2
i = [Xr(t1, t2)−Xr(s1, s2)]

2 + [Xg(t1, t2)−Xg(s1, s2)]
2+

+[Xb(t1, t2)−Xb(s1, s2)]
2

(2.12)

Because every of the three terms is proportional to

(
2∑

i=1
(ti − si)

2

)H

, we

can conclude that the sum will be also proportional to the space coordinate
differences:

σ2
i ∝ 3 ·

(
2∑

i=1

(ti − si)
2

)H

∝
(

2∑
i=1

(ti − si)
2

)H

� (2.13)

We therefore demonstrated that formula (2.9) stands for the color fractal
images we generated using the RGB color space. The same conclusion holds
in the case of the HSV color space, even if the transformation from the
generation color space (HSV) to the image representation color space (RGB)
might change the above statement.
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For the implementation of the generation approach, we modified the
algorithm presented in [93] in order to work with RGB and HSV triplets
and we present here only the lines that differ from the original algorithm.
In the initialization phase, we generate four RGB, or HSV, triplets for the
corners of the color fractal image. All the functions were modified in order
to work with three-dimensional vectors instead of scalar values.

In Figures 2.3 and 2.4 we show the color fractal images obtained by using
the two versions of our generator. The complexity differs, as the Hurst factor
is comprised between 0.1 and 0.9. The size of the images is 256 pixels, in
order to deal with a five-dimensional Euclidian space that has the same
dynamic range on all of its axes.

(a) H=0.9 (b) H=0.7 (c) H=0.5 (d) H=0.3 (e) H=0.1

Figure 2.3: Color fractal images generated in RGB.

(a) H=0.9 (b) H=0.7 (c) H=0.5 (d) H=0.3 (e) H=0.1

Figure 2.4: Color fractal images generated in HSV.

In order to assess the performance of our generator, we analyze the
spread of the vectors representing the colors in the RGB cube and implicitly
the complexity of the generated fractal forms. We do this by (i) visually
inspecting the 3D histograms of the color fractal images; (ii) by quantifying
the variance of the co-occurrence matrices and (iii) by calculating the 3D
histograms of the neighbor 3D increments. See [63] for more details.

For the color fractal images, both generated in RGB and HSV, we com-
puted the 3D histograms, depicted in Figures 2.5 and 2.6. The diameter of
each sphere is proportional to the number of pixels with the same color as
the color of the sphere. The histograms are not able to completely charac-
terize the fractal images, but they indicate in an intuitive way how much
of the RGB space cube is occupied. One can see that for large values of H
the histograms are coarse and not too spread, both for the RGB and HSV
generated images. For small values the histogram tends to have the shape
of a compact sphere in the case of RGB-generated images, and a compact
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cone for the HSV-generated images. In both cases one can see that the RGB
space is better filled: the larger the occupation of the RGB space, the higher
the fractal dimension. The former histograms also show the limitations of
the generator, which is not capable of filling the whole RGB space because,
among various reasons, of the Gaussian distribution of the increments.

(a) H=0.9 (b) H=0.7 (c) H=0.5 (d) H=0.3 (e) H=0.1

Figure 2.5: 3D histograms for the color fractal images generated in RGB.

(a) H=0.9 (b) H=0.7 (c) H=0.5 (d) H=0.3 (e) H=0.1

Figure 2.6: 3D histograms for the color fractal images generated in HSV.

The co-occurrence matrices are used to characterize textures by com-

puting the probability χ
(d,θ)
ci,cj that a pixel p1 of color ci has a neighbor p2 of

color cj , the position of the neighbor being defined by the distance d and
the direction θ:

χ(d,θ)
ci,cj

Δ
=P

[
p1 ∈ Aci , p2 ∈ Acj/ |p1 − p2| = d, (p1, p2) = θ

]
(2.14)

We computed the co-occurrence matrices for a neighborhood distance
of one pixel for the horizontal direction1. Our purpose is to analyze the
repartition of the color increments for the RGB triplets. Theoretically,
the co-occurrence matrices for a color image would require a 6-dimensional
hyper-cube, and will be very difficult to depict. But in our case, as the color
increments are uncorrelated between them, we could reduce the computation
to the co-occurrence matrix on each color plane of the RGB space.

As a measure of variance, we plot in Figure 2.7 the exterior contour of
the shape represented by the co-occurrence matrix for one component of the
RGB space, for various H values between 0.1 and 0.9. One can see that for

1In this case, the definition of the co-occurrence is very closed to the correlation except
for the limitation imposed by the analysis of the data in a particular direction, which
however greatly reduces the computation time.
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the fractal with H = 0.9 the co-occurrence matrices exhibit a diagonal shape
indicating the small variations between neighbor pixels, while for H = 0.5
andH = 0.1 the spread indicates a larger variation. The samples set shape in
each plane is clearly a bi-dimensional Gaussian and, as expected, the width
of this samples set distribution is proportional to the Hurst exponent, which
proves the validity of the generator. The larger variance of the 2D Gaussians
in the case of HSV generated images indicates the fact that higher fractal
complexity can be achieved than in the case of RGB generated images.

(a) RGB (b) HSV

Figure 2.7: The spread of co-occurrence matrices from H = 0.1 (black curve)
to H = 0.9 (lightest gray curve).

Clearly enough, to write a new fractal estimator is not a great challenge,
the more difficult task being to validate the approach on specific objects,
for which the theoretical dimension is well known. Unfortunately, a color
image does not represent a standard five Euclidian form, and a 5-dimensional
Brownian fractional noise could not produce a direct stimulus to validate
our measure. So to produce a generator not too far from the color texture,
we chose to extend the random midpoint displacement method from gray
scale [93] to color domain.

2.3 Vector color fractal generator

Our previous attempt for generating color images with fractal properties
used the midpoint displacement algorithm to generate three independent
random variables, one for each color plane. To go further in our pursuit,
for the implementation of the midpoint displacement approach we used a
tri-variate normal (Gaussian) generator. This allows us to improve the gen-
eration in two ways: (i) the three color components are not independent
anymore and (ii) more interestingly, we can control the colors that are gener-
ated, by specifying the orientation of the cloud of colors in the 3D histogram.
This can be achieved by specifying the covariance matrix Σ, the direction
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of the principal axes of the cloud of points are given by the eigenvectors of
the covariance matrix.

The probability density of a multi-variate normal distribution is:

w(x) =
1

(2π)k/2|Σ|1/2 e
− 1

2
(x−μ)′Σ−1(x−μ) (2.15)

where x = (x1, x2, · · · , xk), k = rank(Σ) is the size of the vector space - 3
in our case for the RGB color space, |Σ| is the determinant of the covariance
matrix, and μ = (μ1, μ2, · · · , μk) is the mean vector of the color set.

The covariance matrix (also called variance-covariance matrix, because
of the fact that the values on the diagonal represent variances) we used for
the results we present below has the following shape:

Σ =

⎛
⎝ 1 σrg σrb

σrg 1 σgb
σrb σgb 1

⎞
⎠ (2.16)

where σξη represents the centered moment of the pair (ξ, η) of random
variables, i.e. a measure of the correlation between the two variables, where
ξ, η = r, g, b.

Using this approach, now two parameters are available for the control of
the multivariate fractal generation: the Hurst factor H, which controls the
complexity of the landscape and the covariance matrix Σ, which controls
the color content of the generated image.

In the following experiments we used the same correlation between color
planes, i.e. the same same sigma values σ = σrg = σgb = σrb and we varied
the Hurst coefficient (i.e. the H values). For Σ = 03×3 the three color
planes are completely uncorrelated, but still not independent. Compared to
the previous approach, we obtain the following color fractal images depicted
in Figure 2.8 along with the corresponding 3D RGB histograms:

(a) H = 0.1 (b) H = 0.5 (c) H = 0.9

(d) H = 0.1 (e) H = 0.5 (f) H = 0.9

Figure 2.8: Color fractal images with vector increments with Σ = 03×3.



16 CHAPTER 2. FRACTAL MODELS

As the correlation between the three color components increases, the
cloud of colors will change its shape from a sphere into an ellipsoid, therefore
the color will finally turn into gray levels. The landscape remains the same,
only the color gamut reduces gradually to the gray-level axis of the RGB
cube. This behavior is emphasized for the color fractal images in Figure 2.9
for H = 0.1 and the σ varied between 0.1 and 0.9. The corresponding 3D
RGB histograms of the images in Figure 2.9 are presented in Figure 2.10.
The same behavior can be observed for H = 0.5 and H = 0.9 in Figure 2.11
and Figure 2.13.

(a) σ = 0.1 (b) σ = 0.3 (c) σ = 0.5 (d) σ = 0.7 (e) σ = 0.9

Figure 2.9: Vector color fractal images with H = 0.1.

(a) σ = 0.1 (b) σ = 0.3 (c) σ = 0.5 (d) σ = 0.7 (e) σ = 0.9

Figure 2.10: 3D RGB histograms of images in Figure 2.9.

(a) σ = 0.1 (b) σ = 0.3 (c) σ = 0.5 (d) σ = 0.7 (e) σ = 0.9

Figure 2.11: Vector color fractal images with H = 0.5.

(a) σ = 0.1 (b) σ = 0.3 (c) σ = 0.5 (d) σ = 0.7 (e) σ = 0.9

Figure 2.12: 3D RGB histograms of images in Figure 2.11.
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(a) σ = 0.1 (b) σ = 0.3 (c) σ = 0.5 (d) σ = 0.7 (e) σ = 0.9

Figure 2.13: Vector color fractal images with H = 0.9.

(a) σ = 0.1 (b) σ = 0.3 (c) σ = 0.5 (d) σ = 0.7 (e) σ = 0.9

Figure 2.14: 3D RGB histograms of images in Figure 2.13.

We performed the following comparison: for the same complexity of the
landscape (e.g. the Hurst H coefficient) we imposed various correlations
between the color components. See the results in Figure 2.15 for H = 0.9.
The conclusion is the the complexity of the terrain is controlled by H, while
the covariance matrix controls the color content of the resulting image.

(a) σrg = .9,
σgb = .5,σrb = .1

(b) σrg = .5,
σgb = .9,σrb = .1

(c) σrg = .1,
σgb = .5,σrb = .9

(d) 3D RGB his-
togram

(e) 3D RGB his-
togram

(f) 3D RGB his-
togram

Figure 2.15: Color fractal images of the same complexity, but different color
content.

Using the fractal dimension estimation approaches - probabilistic box-
counting and covering blanket - that will be presented in Chapter 2.2, we
obtain the following results for the color fractal images in Figure 2.15, pre-
sented in Table 2.1.
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dimB dimMB

2.103± 0.004 2.308± 0.001

2.098± 0.004 2.295± 0.001

2.105± 0.004 2.321± 0.001

Table 2.1: Complexity for color fractal images with H = 0.9.

In the following experiment, we used different sigma values between the
RGB color components and different H values. In Figures 2.16, 2.17 and
2.18 we chose σ = 0.9 for only two color components, while for the other
two the correlation was zero.

(a) H = 0.1 (b) H = 0.5 (c) H = 0.9

(d) 3D RGB hist (e) 3D RGB hist (f) 3D RGB hist

Figure 2.16: Vector color fractal images for σrb = 0.9.

(a) H = 0.1 (b) H = 0.5 (c) H = 0.9

(d) 3D RGB hist (e) 3D RGB hist (f) 3D RGB hist

Figure 2.17: Vector color fractal images for σgb = 0.9.
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(a) H = 0.1 (b) H = 0.5 (c) H = 0.9

(d) 3D RGB hist (e) 3D RGB hist (f) 3D RGB hist

Figure 2.18: Vector color fractal images for σrg = 0.9.

Performing the same complexity assessment, using probabilistic box-
counting and covering blanket, we obtain the following results for the color
fractal images in Figures 2.16, 2.17 and 2.18 presented in Table 2.2.

H σ dimB dimMB

0.1 σrb = 0.9 3.762± 0.156 0.596± 0.001

0.5 σrb = 0.9 2.993± 0.024 1.280± 0.001

0.9 σrb = 0.9 2.114± 0.005 2.352± 0.001

0.1 σrb = 0.9 3.781± 0.145 0.600± 0.001

0.5 σrb = 0.9 2.981± 0.038 1.284± 0.001

0.9 σrb = 0.9 2.112± 0.005 2.310± 0.001

0.1 σrg = 0.9 3.852± 0.170 0.599± 0.001

0.5 σrg = 0.9 3.053± 0.008 1.253± 0.001

0.9 σrg = 0.9 2.128± 0.005 2.279± 0.001

Table 2.2: Complexity estimation for images in Figures 2.16, 2.17 and 2.18.

2.4 Visual impact of increment distribution

In this section we experiment with various distribution for the increments
during the midpoint displacement color fractal image generation. For differ-
ent instances of the random number generator used for Gaussian-distributed
increments in the process of texture synthesis rather visually similar results
are obtained (see Figure 2.19). However when the distribution of the incre-
ments is not Gaussian, various visual effects can be obtained. For instance,
when using exponentially-distributed increments, the color fractal images in
Figure 2.21 are obtained. When the increments are uniformly-distributed,
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the color fractal images in Figure 2.23 are synthesized. The 3D RGB cor-
responding color histograms are presented as well in Figure 2.20, 2.22 and
2.24.

(a) H=0.1 (b) H=0.3 (c) H=0.5 (d) H=0.7 (e) H=0.9

Figure 2.19: Another instance of the Gaussian distribution.

(a) H=0.1 (b) H=0.3 (c) H=0.5 (d) H=0.7 (e) H=0.9

Figure 2.20: 3D RGB histogram of color fractals images in 2.19.

(a) H=0.1 (b) H=0.3 (c) H=0.5 (d) H=0.7 (e) H=0.9

Figure 2.21: Visual impact of exponentially-distributed increments (λ = 2).

(a) H=0.1 (b) H=0.3 (c) H=0.5 (d) H=0.7 (e) H=0.9

Figure 2.22: 3D RGB histogram of color fractals images in 2.21.
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(a) H=0.1 (b) H=0.3 (c) H=0.5 (d) H=0.7 (e) H=0.9

Figure 2.23: Visual impact of uniformly-distributed increments.

(a) H=0.1 (b) H=0.3 (c) H=0.5 (d) H=0.7 (e) H=0.9

Figure 2.24: 3D RGB histogram of color fractals images in 2.23.

2.5 Weierstrass function

The Weierstrass function is a particular type of fractal, being continuous
everywhere, in every point, but differentiable nowhere. The class of func-
tions which are continuous everywhere but nowhere differentiable had been
introduced in the 19th century, before B. Mandelbrot made them popu-
lar through the name of fractals. The earliest known example is due to
Czech mathematician B. Bolzano, who exhibited such a function in the
years around 1830, but which was published only in 1922. C. Cellérier and
B. Riemann also mentioned such functions in their papers, although they
were also published later. K. Weierstrass was the first to publish a paper in
which to exemplify functions which are continuous everywhere but nowhere
differentiable, including also a proof of this assumption [124].

The function originaly defined by Weirstrass is:

f(x) =

∞∑
n=0

ancos(bnπx) (2.17)

where 0 < a < 1, b is a positive odd integer and ab > 1 + 3
2π. G. H.

Hardy expanded the range of possible values for a and b proving that the
non-differentiability still holds for ab > 1 [56]. B. Mandelbrot pointed out
that the Weierstrass function is a fractal and introduced a more general
form for the equation (2.17), which is known as the Weierstrass-Mandelbrot
function:
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W (x) =
∞∑

k=−∞

(1− eib
kt)

bk(2−D)
(2.18)

where b > 1 and 1 < D < 2. The real part of (2.18) is the cosine fractal
function:

C(x) = Re(W (x)) =

∞∑
k=−∞

(1− cos(bkx))

bk(2−D)
(2.19)

For a detailed description of the Weierstrass-Mandelbrot function see
[12]. According to [12], when D is close to 2, W (x) is a model for 1/f noise
and when D < 1, W2(x) is not a fractal. W (x) has the box-dimension D
[40].

In Figure 2.25 we show the Weierstrass function for a = 0.5 and b = 3, as
well as our proposed extensions to grayscale and color image domains. For
the color image we worked in RGB, based on the independence hypothesis
between the color planes. This is still work in progress and the fractal
dimension of these images has to be estimated and mathematically proved.

(a) 1D (b) 2D (grayscale) (c) 5D (color RGB)

Figure 2.25: Weierstrass function and fractal images.

2.6 Perlin noise

Another method used for fractional Brownian motion functions generation
was proposed by Musgrave in [86] and [87] and by Saupe in [109] and is
based on summing band-limited base signals. This algorithm also permits
the adjustment of the lacunarity and fractal dimension parameters. The
bidimensional base function, is the so-called Perlin noise function, intro-
duced in [95], which is a band-limited signal of random amplitude variation
(Fig. 2.26(a)). Albeit the fact that mathematically the link to fractals it is
not proven, Perlin noise is successfully used to generate various textures in
computer graphics.

The Perlin noise (N : Rn → R) is implemented using a set of random
gradient values defined at discrete points within the domain of the function.
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In those discrete points the function value is zero and its rate of variation is
given by the gradient value associated with that point. The function values
at non-integer points is computed using an interpolation given by the cubic
function (e.g. y = 3x2−2x3). The noise function may have at most one zero-
crossing between two consecutive discrete points, so the highest frequency
of the noise signal is f where f is also the spacing frequency of the integer
points within the function domain; the lowest frequency is f

2 . However we
may add low frequency components to the signal by setting non-zero function
values at integer points in the domain. In order to scale the frequency of N
by a factor k, a scalar multiplication kp has to be performed on the domain
vectors p.

(a) 1D (b) 2D (grayscale) (c) 5D (color, RGB)

Figure 2.26: Perlin noise.

Using the Perlin noise, the fractional Brownian motion function can be
defined as [87]:

X(p) =

m∑
i=1

N(pλi)λ−Hi (2.20)

in which H is the Hurst exponent which is in connection with the fractal
dimension, λ is the fractal lacunarity and m is the number of additions
performed, which is typically comprised between 3 and 12. The randomness
of the function is given by the random gradients within the Perlin noise
definition.

In Figure 2.26(b) we show the grayscale image resulting from the ex-
tension of the presented approach to a two-dimensional support space. We
present also in Figure 2.26(c) the result we obtained by preliminary inves-
tigation of possibilities of extending the Perlin noise to color images, using
vector gradients expressed in RGB.
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Chapter 3

Fractal features

The fractal analysis proved to be of a great interest for the digital image
analysis, being widely used in applications such as finance and stock mar-
ket prediction, malign/bening analysis in medicine, quality of food analysis,
civil engineering and even art [115]. In this chapter we discuss two fractal
features: fractal dimension and lacunarity. Fractal dimension is a mea-
sure that characterizes the complexity of a fractal, indicating the amount
of irregularity and how much the available space is filled. Lacunarity is a
complementary fractal measure which indicates how the space is filled, be-
ing similar to a distribution function. The two properties are usually used
for discriminating between various signals exhibiting fractal properties, like
texture images [26] [73]. The fractal dimension, for instance, is used to
characterize, classify or to segment images or regions [24] [101] [85] [88].

The fractal features are perfectly suited for the multi-scale analysis of
images and multi-dimensional signals, by observing the variation of a mea-
sure as a function of the analysis scale. For pure deterministic fractals, the
measure is constant in a log-log bi-dimensional space and, by construction,
invariant to scale transformation, rotation or translation of the object. These
characteristics justify the choice of this operator in many texture analysis
tools.

3.1 Fractal dimension

B. Mandelbrot defined the fractals as sets or objects with a Hausdorff di-
mension exceeding the topological dimension. The topological dimension is
the smallest integer value n, so that if we cover the given set by a family
of open sets, there are no more than n + 1 with common points [37]. The
Hausdorff dimension is based on the definition of the Hausdorff measure H .
For a given set F ⊂ Rn and s ∈ R+, for any δ > 0, by definition:

25
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H s
δ (F ) =

∧{ ∞∑
i=1

|Ui|s : F ⊂
∞⋃
i=1

Ui, |Ui| < δ

}
(3.1)

where
∧

is the infimum of the set and |Ui| represents the diameter of
set Ui, given by the maximum distance between two points a, b ∈ Ui [40].
Thus the initial set F is covered with a countable family of sets Ui with the
diameter smaller than δ and minimizing the sum of the power of s of the
diameters of the sets Ui. Then the measure

H s(F ) = lim
δ→0

H s
δ (F ) (3.2)

is called the s-dimensional Hausdorff measure. It’s demonstrated that
H s(F ) is a decreasing function with respect to s. Moreover, there exists a
value s0 so that

H s(F ) =

{ ∞ if 0 ≤ s ≤ s0
0 if s > s0

(3.3)

This critical value where the function skyfalls from infinity to zero is
called Hausdorff dimension, denoted dimHF and defined by:

dimHF = inf {s ≥ 0 : H s(F ) = 0} = sup {s : H s(F ) = ∞} (3.4)

Such a definition is difficult to use in practical implementations, conse-
quently various approximations were proposed. One of them is the similarity
dimension dimSF which is defined as the ratio of the logarithm of the num-
ber of subsets composing a fractal object and its scaling factor r:

dimSF = − logN

log r
(3.5)

To illustrate, let’s take the example of the Koch curve. In the construc-
tion process of this fractal, which repeats itself iteratively or recursively, the
initial segment is divided in three equal parts and the middle part is replaces
with a equilateral triangle missing the bottom. Thus the fractal is composed
of four objects similar to the initial set, scaled by a factor of three. Then
the similarity dimension of the Koch curve is:

dimSFKoch = − log 4

log 1
3

= 1.26 (3.6)

For non-deterministic or probabilistic fractals this dimension cannot be
computed, because of the difficulty in determing the two measures N and
r due to the randomness of the analyzed object. In order to overcome this
issue, various methods for Hausdorff dimension estimations were proposed.
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These methods take into account the intrinsic randomness of a fractal and
are based on assessing a certain characteristic measure of the analyzed ob-
jects, like area or length. Consequently, various definitions of the fractal
dimension emerged, depending on the proposed approach: (i) box counting
dimension, (ii) correlation dimension, (iii) Minkowski-Bouligand dimension,
their purpose being of estimating the Hausdorff dimension. All these di-
mensions, described in the following section, are called generically as fractal
dimensions (DF ) in the literature. According to B. Mandelbrot only the
Hausdorff dimension is a fractal dimension.

3.2 Fractal dimension estimation

Albeit the fact that a plethora of algorithmic approaches exist for the compu-
tation or the estimation of the fractal dimension, only few of them offer the
theoretical background that links them to the Hausdorff dimension. How-
ever, let us start with a simple and intuitive example, by considering the
simple geometrical shapes in Figure 3.1. If we consider a segment, which is a
one-dimensional object, divided in N equal parts, then each part is a scaled
version of the original segment by a factor of r = 1

N . To reconstruct the
whole object we need N such scaled parts, which is Nr1 = 1. If we take the
square, which is a two-dimensional object, divided in N equal parts, scaled
by a factor r = 1

N
1
2
, then the whole square is reconstructed as Nr2 = 1.

Furthermore, the cube is a three-dimensional object and if we divide it in
N equal parts, each part is a cube scaled by a factor r = 1

N
1
3
and thus its

reconstruction is done as Nr3 = 1. If we generalize, any object composed of
N copies of it, scaled by a factor r, has the dimension d = −logN

logr .

Figure 3.1: Three simple Euclidian objects.

3.2.1 The box-counting dimension

From the different expressions directly linked to the theoretical one of the
Minkowski-Bouligand [40], the box-counting dimension and estimation ap-
proach are the most popular due to the simplest algorithmic formulation,
compared to the Hausdorff dimension. The algorithm for the estimation of
the box-counting dimension was introduced in [45] and it aims at covering
the space containing the fractal objects with sets of known dimension, called
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boxes, and counting how many boxes cover the object. This process is re-
peated for various box sizes. For a fractal object F , the number of boxes
N(δ) varies as a function of their dimension δ1 according to the equation:

Nδ(F ) = δ−dimBF (3.7)

where dimBF is called the box counting dimension, an approximation of
the Hausdorff dimension. Further on, we can write:

logNδ(F ) = −dimBF log δ (3.8)

Consequently, the box counting dimension is:

dimB = − logNδ

logδ
δ 
= 1 (3.9)

where N(δ) is the number of boxes of size δ needed to cover the fractal
set.

Practically, it can be determined as the slope of the regression line
through the measurement points (the number of boxes that cover the ana-
lyzed signal, as a function of box size) in logarithmic coordinates. Various
approaches were proposed for the box-counting implementation. In [108]
the definition domain is divided into boxes of variable size. We illustrate
an example in Figure 3.2 for three measurement points: δ1 = 3, δ2 = 5 and
δ3 = 7.

(a) N(δ1) = 48 (b) N(δ2) = 19 (c) N(δ3) = 8

Figure 3.2: Illustration of the box counting dimension estimation.

For the given example, the box-counting dimension of the analyzed
signal is estimated as the slope of the regression line through the points
< log(δ),−log(Nδ) >:

1Note that in this chapter δ denotes the size of analysis boxes or the diameter of the
covering sets.
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Figure 3.3: Regression line splope as fractal dimension estimation.

We draw the attention on the impact of the regression line computation
on the box-counting estimation method. The estimation procedure may
induce an important variation, as it will be seen in the following section.
Most of the articles on fractal dimension box counting estimation mention
the least square method for the computation of the regression, the correct
choice for theoretical fractal objects. But none of them mentions the large
variation that may occur (sometimes up to 20%) depending on the weighting
function used in the least-square line-fitting method for natural/real objects
or synthetic fractals objects.

3.2.2 Probabilistic box-counting

The probabilistic algorithm proposed by Voss [123] based on the proposal of
Mandelbrot [79] (see chapter 34), considers the image as a set of points in
an Euclidian space. According to [70], the spatial arrangement of the set is
characterized by the probability matrix P (m, δ), the probability of having
m points included into a cube of size δ called a box, centered in an arbitrary
point of the analyzed image. For each value of δ, the matrix is normalized
so that:

Q∑
m=1

P (m, δ) = 1, ∀δ (3.10)

where Q represents the number of points that can fall within a box of
size δ. Given the total number of points in the image is M , the number
of boxes that contain m points is (M/m)P (m, δ). Consequently, the total
number of boxes needed to cover the image is:

〈N(δ)〉 =
N∑

m=1

M

m
P (m, δ) = M

N∑
m=1

1

m
P (m, δ) (3.11)
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which is an estimate of N(δ), so the amount
Q∑

m=1

1
mP (m, δ) is directly

proportional to δ−dimBF and can be used for the computation of the box-
counting dimension: N(δ) =

∑N
m=1

1
mP (m, δ) ∝ δ−dimB .

If a gray-level image can be modelled as a discrete surface z = f(x, y)
in a three-dimensional space, where z is the luminance in every (x, y) point
of the space, the model can be extended for color and multispectral images.
However, until [63] there was no reference to a model and fractal dimension
estimation approach dedicated to color images, despite the fact that the
theoretical background for fractal analysis is based on the Borel set measure
in an n-dimensional Euclidian space [40]. There are very few approaches
that link the fractal dimension to color and multispectral images and the
purpose is only restricted to marginal color analysis and transformation of
a gray scale problem into a false color one [1].

We considered in [63] a color image as a hyper-surface in an RGB color
space: f(x, y) = (r, g, b). Therefore in the case of color images we deal with
a 5-dimensional Euclidian hyper-space and each pixel can be seen as a 5-
dimensional vector (x, y, r, g, b). We have chosen to work in RGB space due
to its cubic organisation coherent with the 2-dimensional spatial support
of the image. Thus, we could meet the constraint of expression in a 5-
dimensional space.

The classical algorithm of Voss defines cubes of size δ centered in the
current pixel (x, y, z = f(x, y)) and counts the number of pixels that fall
within a cube determined by the following two opposite corners: (x− δ

2 , y−
δ
2 , z − δ

2) and (x+ δ
2 , y +

δ
2 , z +

δ
2). A direct extension of the Voss approach

to color images would count the pixels F = f(x, y, r, g, b) for which the
Euclidian distance to the center of the hyper-cube Fc = f(xc, yc, rc, gc, bc)
would be smaller than δ:

|F − Fc| =
√√√√ 5∑

i=1

|fi − fci|2 ≤ δ (3.12)

Given that the Euclidian distance in RGB space does not correspond
to the perceptual distance between colors, we prefer to use instead the
Minkowski infinity norm:

|F − Fc| = max(|fi − fci|) ≤ δ ∀i = 1, 5 (3.13)

Practically, for a certain square of size δ in the (x, y) support, we count
the number of pixels that fall inside a 3-dimensional RGB cube of size δ,
centered in the current pixel.

In Figure 3.4 we present four color texture images exhibiting fractal
properties used in our experiments in this chapter: a flat orange plane, an
industrial sponge (monochrome texture of low complexity), a psoriatic lesion
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(a more complex texture with variations in color) and a lichen (higher com-
plexity both in texture and color). For three of them we plot the evolution
of N(δ) in Figure 3.5: for orange N(δ) is a straight line, corresponding to
a fractal dimension of 2.0. For psoriasis and cladonia, the evolution is no
longer linear, which makes the estimation of the regression line slope a more
delicate issue. A correction has to be applied, which is proposed below.

(a) orange (b) sponge (c) psoriasis (d) cladonia

Figure 3.4: Four color texture fractal images.

Figure 3.5: The N(δ) curves in a log-log space for images in Figure 3.4.

For the validation of our proposed estimation method we used the syn-
thetic color fractals images from the previous chapter of this book (see Fig-
ure 2.3), for which we demonstrated the correct ranking of the color texture
complexity in the RGB color space. In Figure 3.6, we show the N(δ) curves
in a log-log space, represented with a black thick starred line. On the same
graphs we plot the regression lines obtained from different methods to esti-
mate the probabilistic box-counting fractal dimension of three color fractal
images, with H = 0.9, 0.5 and 0.1, respectively. There exist several ap-
proaches to the linear regression computation, all based on a iteratively
reweighted least-square algorithm. Since Mandelbrot, in all the cited ar-
ticles, only the ordinary least squares method (ols) is mentioned for the
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(a) H = 0.9 (b) H = 0.5 (c) H = 0.1

Figure 3.6: N(δ) curves and the corresponding regression lines.

estimation of the slope of the N(δ) curves in a log-log space. We inves-
tigated the usage of nine methods for linear regression on noisy datasets
available in the Matlab Statistics Toolbox. The difference between the nine
methods consists mainly in the weighting function used for the computation
of the residuals at each iteration, and implicitly to give lower importance to
the points that do not fit very well.

At a first glance, the generated complexity in images is well captured by
our color fractal measure, but the estimated fractal dimension is not well
correlated to the one of the generated synthetic color fractal images for all
linear regression approaches (see Table 3.4). The mismatch is clearly due to
the poorly calculated slope of the regression line. Moreover, one may note
that when the complexity of the fractal textures grows up, the N(δ) curve
bends, diverting from a straight line. But still, for large scales, the N(δ)
curves indicate the correct ranking.

A thorough introspective, presented in [63], indicates that for the gen-
erated fractals of middle and high complexity, the N(δ) measurements are
altered for the small scales. Apparently, the fractal dimension restricted to
those scales tends to be close to zero, which is clearly false. By investigating
the P (m, δ) matrix, if P (1, δ) equals one or is very close to one, that is a
clear indication that the hyper-cube of size δ is inappropriate for correctly
measuring the fractal dimension, in other words is not able to capture the
variations in the fractal image. Those points will lead to a small fractal
dimension and will also introduce a larger variation in the estimation of
the slope of the regression line. So the different linear regression approaches
could not solve themselves this problem, which is more complex than a noise
addition to the measure.

In order to overcome this situation, we chose to weight the sample values
according to their expected accuracy. For the fractal image of high complex-
ity the dimension measures are less affected by the quantization error for
medium and large box sizes than for the small ones. Therefore, it seems
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method H = 0.9 H = 0.5 H = 0.1

ols 2.301 2.758 2.032
andrews 2.253 3.303 2.923
bisquare 2.253 3.303 2.923
cauchy 2.275 3.284 2.288
fair 2.287 3.119 2.222
huber 2.286 3.163 2.230
logistic 2.284 3.154 2.255
talwar 2.279 3.300 2.032
welsch 2.254 3.304 2.517

mean 2.275 3.187 2.380

variance 0.0003 0.0316 0.1153

Table 3.1: The fractal dimension for the three color fractal images as a
function of the least-square method.

natural that the points corresponding to the medium and large boxes to be
taken into account more than the ones corresponding to the small boxes. In
case of a gray-scale image the maximum quantification error for a pixel is
one given that the current value may have a correspondence in the contin-
uous domain that varies within the interval ±0.5. For a cube of size δ = 3,
the maximum number of pixels that may fall within is δ2 = 9, thus the
maximum error is 9. By extrapolation and normalization of the maximum
error with respect to the volume of the cube, the maximum quantization
error will be: ε(δ) = δ2

δ3
= 1

δ . For a color image, the error triples with the
number of color coordinates. The dependency of the quantization error on
the size of the boxes is depicted in Figure 3.7.

Figure 3.7: The maximum quantization error as a function of box-size.
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We therefore proposed three different weighting functions, but the most
effective proved to be the following one:

w(δ) =
1

ε2(δ)
(3.14)

In Figure3.8 one can see the impact of the weighting function in the
estimation of the regression line (see also Table 3.2). As expected, the
estimated slope is more linked to the middle and high scales of the fractal
measure.

(a) H = 0.9 (b) H = 0.5 (c) H = 0.1

Figure 3.8: N(δ) curves the regression lines using weighting function.

method H = 0.9 H = 0.5 H = 0.1

ols 2.251 3.213 3.279
andrews 2.233 3.249 4.066
bisquare 2.233 3.251 4.066
cauchy 2.234 3.279 3.895
fair 2.239 3.274 3.712
huber 2.237 3.272 3.773
logistic 2.238 3.274 3.770
talwar 2.233 3.241 3.974
welsch 2.233 3.276 4.023

mean 2.237 3.258 3.840
variance 0.000035 0.00048 0.0621

Table 3.2: The fractal dimension for all the nine methods.

The fractal dimension obtained after weighting the measured data ex-
hibits an increased range of values up to 4.066, as well as a smaller variance
for the results of the nine estimation methods. For the images presented
in Figure 3.4 we obtain the color fractal dimensions: 2.00, 3.39 and 3.71,
respectively, using the weighting function and the andrews and the bisquare
regression methods. For the same images, we present in Table 3.3 the results
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of a marginal analysis, i.e. the fractal dimension computed for the gray-scale
images, as well as for each of the three RGB planes. From an RGB color
point of view, definitely cladonia is more complex than psoriasis, but this
fact cannot be captured by a marginal analysis, which surprisingly enough
indicates the contrary.

image gray-scale red green blue

“psoriasis” 2.707 2.713 2.700 2.706

“cladonia” 2.527 2.536 2.551 2.479

Table 3.3: Marginal fractal analysis for the images in Figure 3.4.

We show in Figure 3.9 the impact of the choice of the distance expression
on the estimation of the fractal dimension for the synthetic color fractal im-
ages. We compared the Minkowski infinity norm (i.e. Chebyshev distance)
against the Euclidian distance and one can see that the latter one leads to
an incorrect ranking of the texture complexity.

Figure 3.9: Distance choice impact on fractal dimension estimation for the
color texture images in Fig. 2.3.

In Figure 3.10 we show three color textures from the VisTex data base,
with their estimated box-counting fractal dimensions, using the probabilistic
box-counting approach presented in this chapter. The estimated fractal
dimensions are in accordance with their perceived complexity.
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(a) Texture1 (3.21) (b) Texture2 (3.48) (c) Texture3 (3.82)

Figure 3.10: Three color textures from the VisTex data base.

The corresponding N(δ) curvers are presented in Figure 3.11. We stress
out the fact that for certain scales where the curves are linear, these natural
objects exhibit fractal properties.

Figure 3.11: The N(δ) curves for the textures in Fig. 3.10.

In [36] the authors are using only the linear part of the logN(δ) for the
estimation of the fractal dimension. In [59] it is argued that this approach
does not always lead to a correct estimation. A solution is proposed in [94],
by introducing the concept of fractal signature - a vector of loccaly estimated
fractal dimensions. This opens the discussion to the multifractality nature
of real objects.

3.2.3 Correlation dimension

In chaos theory, the correlation dimension—usually denoted by ν—is a mea-
sure of how much space is occupied by a set of random points [48]. It is
intimately connected to the fractal dimension and even referred to as a type
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of fractal dimension. We propose an extension to color images of the existing
correlation dimension proposed by Grassberger & Procaccia.

The correlation dimension [48] is based on the computation of the cor-
relation integral C(δ) for a set of points {x1, x2, · · · , xN}, defined as:

C(δ) = lim
N→∞

q
N(N−1)

2

= lim
N→∞

2q

N(N − 1)
(3.15)

where q is the number of pairs (xi, xj) for which the distance |xi − xj | is
less then δ, or more generally speaking d(xi, xj) < δ. Then the correlation
dimension dimCF of a fractal object F is:

dimCF = lim
δ→0

logC(δ)

log δ
(3.16)

and can be computed as the slope of the regression line through the
points < −log[C(δ)], log(δ) >.

In [10], Bardet proves the relationship between the local correlation di-
mension and the Hausdorff dimension of continuous random fields, then it
uses it to analyze the complexity of fractional Brownian motion. For a R

d-
valued continuous (with respect to the Rd-Lebesgue measure) random vector
process the local correlation dimension ν—if it exists—is smaller than the
Hausdorff dimension dimHX: 0 ≤ ν ≤ dimHX ≤ d and that in some
particular situations the equality stands: ν = dimHX = d.

The generalization to R
d of the correlation dimension exists (see [10]),

but there are no particular results for color images. In a first approach we
use the ΔE color distance in the CIE Lab color space between colors of a
given neighborhood. The reason is twofold: (i) the Euclidian distance makes
sense in the CIE Lab color space and (ii) the distance is perceptually linear,
being in accordance with the color difference perception of the human visual
system. Thus the fractal complexity we estimate by the modified correlation
dimension integrates naturally the human perception of the complexity of a
given color texture. We validate our approach both on synthetic and natural
images exhibiting fractal properties.

We used three of the images from Figure 2.4 [61], with different complex-
ity, i.e. different values of the Hurst factor H. The following C(δ) curves
are obtained, presented in a log-log space in Figure 3.12 together with the
regression lines. The slope of the regression line given by the nine flavours
available in Matlab of the least square regression line estimation approach
is also presented in Table 3.4. The curves tend to bend for large values of
δ – as the large color distances are not numerous, the correlation integral
C(δ) reaches 1.
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(a) H = 0.9 (b) H = 0.5 (c) H = 0.1

Figure 3.12: The C(δ) curves in the log-log space.

method H = 0.9 H = 0.5 H = 0.1

ols 1.201 1.177 1.004
andrews 1.163 0.493 0.153
bisquare 1.163 0.513 0.166
cauchy 1.156 0.979 0.571
fair 1.159 1.049 0.778
huber 1.161 1.022 0.715
logistic 1.156 1.020 0.719
talwar 1.201 0.731 0.241
welsch 1.159 0.724 0.267

mean 1.1688 0.856(4) 0.51267
variance 0.0003402 0.06154203 0.09780225

Table 3.4: The correlation dimension for the three color fractal images.

The estimated fractal complexity has a significant variance and for the
high complexity image (H=0.1) the mean estimated slope is smaller than the
one for a less complex image (H=0.5). In other words, the correct ranking
of the synthetic color fractal images based on their complexity cannot be
reached. The different linear regression approaches could not solve them-
selves this problem and a possible solution is to weight the C(δ) values
according to their estimated accuracy. The proposed weighing function is
designed to solve the lack of accuracy for large values or δ, based on the
intrinsic properties of the fractal model used by the color fractal image gen-
erator [63, 61]. As the fractal complexity is linked to the statistical behavior
between the spatial distance and the color distance in a power law [40], the
weighing function must respect such a law. In the midpoint displacement
fractal image generation algorithm the largest color distances are generated
for the farthest spatial pixels in the image, i.e. the four corners. Then
the image is divided in four squares and the process is re-iterated with half
the initial topological distances, thus smaller color distances, according to
a Brownian process. As the iteration number grows, the color distances are
proportional to an ever decreasing topological Euclidian distance, therefore
more smaller color distances are generated, and their number is a power of
4. We therefore propose to use the following weighting function:



3.2. FRACTAL DIMENSION ESTIMATION 39

w(δ) = 4δmax−δ (3.17)

where δmax is the maximum value of δ (see Figure 3.13).

Figure 3.13: The proposed weighting function.

In Figure 3.14 one can see the impact of the proposed weighting function
in the estimation of the regression line (see also Table 3.5). As expected, the
estimated slope is more linked to the middle and low scales of the measure,
thus being able to reach the correct ranking according to the perceived
complexity of the color fractal images.

(a) H = 0.9 (b) H = 0.5 (c) H = 0.1

Figure 3.14: The C(δ) curves in the log-log space using the w(δ) weighting.

method H = 0.9 H = 0.5 H = 0.1

ols 1.575 1.823 1.936
andrews 1.680 1.884 2.017
bisquare 1.680 1.884 2.016
cauchy 1.649 1.872 1.997
fair 1.615 1.861 1.987
huber 1.630 1.865 1.988
logistic 1.627 1.866 1.991
talwar 1.603 1.881 2.004
welsch 1.679 1.881 2.010

mean 1.6376 1.8686 1.994
variance 0.0014 0.0003688 0.0006045

Table 3.5: The correlation dimension for all the nine methods and for the
proposed weighting function.
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Clearly, by computing strictly the distance between pixel colors in an
image (or a given neighborhood) disregarding the spatial arrangement of
pixels, the fractal dimension is underestimated. Moreover, the same corre-
lation dimension may be estimated for images with the same color content
but different topology (see the two signals illustrated in Figure 3.15).

(a) low complexity (b) high complexity

Figure 3.15: Two different signals with the same correlation dimension.

Therefore we propose integrating of the spatial distance in the distance
computed between colors. We consider each pixel as a 5D vector: x =
{x, y, r, g, b} or x = {x, y, L, a, b} if the image is represented using RGB or
CIE Lab spaces. The definition of the distance, however, is not straight-
forward, given the different nature of the components: (x,y) are spatial
coordinates and (r,g,b) or (L,a,b) are color coordinates. For natural images,
the dynamic range of spatial coordinate values can be extremely large (due
to current image sensor resolution of tens of MPixels), compared to the color
component dynamic range which remains in the range of [0, 255]. Given that
for the synthetic images we used for validation so far, the color components
are produced as linear combinations of spatial components, being directly
proportional, and the size of the generated images is 256 × 256 pixels to
match the available range of color component values, we use the Euclidian
distance d(x1,x2) between two pixels x1 and x2:

√
(x1 − x2)2 + (y1 − y2)2 + (L1 − L2)2 + (a1 − a2)2 + (b1 − b2)2 (3.18)

Using this distance definition and the weighting function proposed we
obtain the following results in Figure 3.16 and Table 3.6. One can see that
the estimation is improved in the sens of increasing the dynamic range of
values and getting closer to the ones given by the box-counting estimation.

(a) H = 0.9 (b) H = 0.5 (c) H = 0.1

Figure 3.16: The C(δ) curves using the 5-D distance and weighting function.
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method H = 0.9 H = 0.5 H = 0.1

ols 1.981 2.525 3.170
andrews 2.012 2.611 3.276
bisquare 2.011 2.611 3.274
cauchy 2.001 2.589 3.236
fair 1.996 2.560 3.222
huber 1.997 2.564 3.223
logistic 1.999 2.566 3.227
talwar 1.986 2.609 3.225
welsch 2.007 2.609 3.254

mean 1.9989 2.5826 3.2341
variance 0.00011086 0.00093725 0.001032361

Table 3.6: The correlation dimension for all the nine methods and for the
proposed 5-D distance weighting function.

For the validation of the proposed approach on natural color images,
we chose three natural color texture images from Figure 3.4. The obtained
C(δ) curves are presented in Figure 3.17 in a log-log space, all three curves
being well separated according to the perceived complexity of images and
converging to the same upper limit, given that all (i, j) pairs obey |Xi−Xj | ≤
δ for large values of δ.

Figure 3.17: The C(δ) curves for images in Fig. 3.4.

without weighting with weighting

image mean variance mean variance

sponge 0.3910 0.0275 1.1096 0.000107
psoriasis 0.6326 0.0501 1.6094 0.000589
cladonia 1.1077 0.0279 1.8692 0.000502

Table 3.7: The mean and variance of correlation dimension for the three
natural color images.

The impact on the estimated fractal dimension of the weighting function
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can be seen in Table 3.7: once more the correct ranking is obtained, in
accordance with the perceived complexity of these images. The impact of
using the 5D distance can be seen in Table 3.8.

without weighting with weighting

image mean variance mean variance

sponge 1.1988 0.1821 2.3440 0.0139
psoriasis 1.5023 0.1603 2.5007 0.0095
cladonia 1.7958 0.1207 2.6130 0.0070

Table 3.8: The mean and variance of correlation dimension for the 5D dis-
tance case.

For the future work, one may consider performing a comparison on the
behaviour of the correlation dimension when different color distances, given
the existence of ΔE94 and ΔE2000 with an improved behaviour for small
color distances. And an extension to the multispectral domain.

3.2.4 Covering blanket

Another way to estimate the Hausdorff dimension is the covering blanket
approach. This is based on the proposal of Minkowski of computing the
length L of a curve F by dilating it using a disk of radius ε, followed by the
computation of the area A(ε) of the dilated set. The length will be equal to:

L(F ) = lim
ε↘0

A(ε)

2ε
. (3.19)

If the function F is a fractal, then the length varies as a function of ε:

Lε(F ) = c lim
ε↘0

ε(1−dimMBF ) (3.20)

where c is a constant and dimMBF represents the Minkowski-Bouligand
dimension of the object F . This can be computed by replacing the length
Lε(F ) from eq. (3.20) with the one given by eq. (3.19):

lim
ε↘0

A(ε)

2ε
= c lim

ε↘0
ε(1−dimMBF ) (3.21)

Without the limit, we obtain:

A(ε) = 2cε(2−dimMBF ) (3.22)

And by applying the logarithm, it gives:

logA(ε) = log(2c) + (2− dimMBF ) log ε (3.23)

dimMBF =
log(2c)

log ε
+ 2− logA(ε)

log ε
(3.24)
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But ε ↘ 0 and therefore log(2c)
log ε ↗ 0. Consequently, the definition of the

dimension proposed by Bouligand [15] is:

dimMBF = lim
ε↘0

(
2− logA(ε)

log ε

)
(3.25)

The notion was extended to the computation of the fractal dimension of
fractal objects in Rn [79]:

dimMBF = lim
ε↘0

(
dimTF + 1− log V (ε)

log ε

)
(3.26)

where dimTF represents the topological dimension of the fractal object
F ∈ Rn and V (ε) is the hypervolume envelopping the fractal object at a
distance ε.

For the analysis of signal and images, this technique was formalized using
mathematical morphology, thus resulting the covering blanket approach [94]
[81]. In the Chapter 4, section 4.3 we present our approach of covering
blanket for color images and results of fractal dimension estimation.

3.3 Lacunarity

Lacunarity is fractal measure very useful for the multi-scale analysis of the
images that exhibit fractal properties, being complementary to the frac-
tal dimension. Mandelbrot realized that the fractal dimension itself is not
enough to completely describe the complexity of fractal sets [79]. There-
fore, he introduced the concept of lacunarity, as a complementary metric.
Lacunarity is a measure that characterizes the way in which the fractal set
occupies the available topological space. It is a mass distribution function
by definition. Historically, after the definition of Mandelbrot, the definition
of Voss soon followed [123] [26].

Together with the fractal dimension, the lacunarity is usually used as a
metric for the discrimination between images exhibiting fractal properties,
like textures [26] [43]. They are mainly used to characterize, classify or to
segment images or regions. For the computation of lacunarity there exist
several approaches, the probabilistic algorithm being accepted as the most
elegant approach. However, all the existing methods are defined for one
dimensional signals or binary images with extension to gray-scale images.
We present a color expression of the lacunarity based on the probabilistic
algorithm for the computation of the fractal dimension.

According to the definition of Voss, lacunarity is the entropy of the points
of the discrete surface representing the image, in other words the dance of
the luminosity on the z axis. In our color approach, lacunarity characterizes
the spread of vectors in the RGB space and represents a measure of the
correlation between colors represented in the RGB color model. In most of
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the approaches, including the probabilistic algorithm defined by Voss [123]
the image is considered to be a set of points in a Euclidian space. The spacial
arrangement of the pixels of the image is characterized by the probability
matrix P (m, δ) of havingm points included into a box of size δ centered in an
arbitrary point of the image, as previously defined in eq. (3.11) regarding the
number of boxes in the context of the probabilistic box-counting estimation
(Section 3.2.2).

The lacunarity, as defined by Voss, is based on the first and second order
moments computed using the probabilities P (m, δ):

M(δ) =

N∑
m=1

mP (m, δ) M2(δ) =

N∑
m=1

m2P (m, δ) (3.27)

Λ(δ) =
M2(δ)− (M(δ))2

(M(δ))2
(3.28)

We model the color images in the same way we showed in Section 3.2.2,
thus we deal with a 5-dimensional Euclidian hyper-space and each pixel
is a vector (x, y, r, g, b). The classical algorithm of Voss defines cubes of
size δ centered in the current pixel and counts the number of pixels that
fall inside a cube of size δ. We generalize this by counting the pixels for
which the Minkowski infinity norm distance is smaller than δ (see eq. 3.13).
Practically, for a certain square of size δ in the (x, y) plane, we count the
number of pixels that fall inside a 3-dimensional RGB cube of size δ, centered
in the current pixel.

We show in Figure 3.18 the lacunarity curves we obtain for three kind of
color texture images: three synthetic color fractal images from Figure 2.3,
three natural fractal images from Figure 3.4 and three color texture images
from VisTex in Figure 3.10.

(a) synthetic fractals (b) natural fractals (c) VisTex color textures

Figure 3.18: Lacunarity curves.

As the fractal dimension is linked to the texture complexity, the lacunar-
ity is correlated to the surface evolution which supports the signal evolution.
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As expressed by Mandelbrot, the lacunarity is relative to the perception of
mounts and valleys in the texture complexity. For instance, even if the color
fractal image with H = 0.9 may seem complex visually due to its color con-
tent, its lacunarity is small due to low frequency variations. For the uniform
color image orange, the dimension is 2.0 and the lacunarity is zero. For pso-
riasis the complexity is relatively small (dimB = 3.39) and the lacunarity
reveals the fact that the heterogeneity is exhibited for hyper-cubes of size
between 7 and 21 pixels. For a more complex color image like cladonia, the
lacunarity expresses the differences in spatial organization between different
color zones (red, green, white). The examples show the additive property of
the lacunarity and also explain the level difference in the lacunarity curves.
For more details on validation and interpretation of the lacunarity see [62].

3.4 Limitations of current estimation techniques

We analyzed the evolution of the color fractal measures of the synthetic
images in Figure 2.3 as a function of image resolution. Let us consider the
color fractal image of middle complexity (H = 0.5) generated at various
spatial resolutions: 256 × 256, 512 × 512, 1024 × 1024, 2048 × 2048 and
4096× 4096 presented in Figure 3.19.

Figure 3.19: Color fractal images of the same complexity, but different spa-
tial resolutions.

All five images are correctly perceived by the human eye as being of
the same complexity. Moreover, the normalized 3D RGB histograms from
Figure 3.20 indicate that the color content is basically the same.

(a) 256x256 (b) 512x512 (c) 1024x1024 (d) 2048x2048

Figure 3.20: 3D RGB histograms of images in Figure 3.19.
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In Figure 3.21 we show the evolution of the color fractal dimension and
the color lacunarity curves for the images in Figure 3.19 as a function of
image resolution.

(a) Fractal dimension (b) Lacunarity curves

Figure 3.21: Fractal dimension and lacunarity vs. image resolution.

One can notice that the estimated fractal dimension decreases with the
increased resolution and the standard deviation indicates a bigger discrep-
ancy between the results given by the nine estimation algorithms available
in Matlab. Except for the 4096× 4096 image resolution for which the stan-
dard deviation is very small, but this is the consequence of the fact that the
estimated fractal dimension is close to 2.0—corresponding to a plane—i.e.
the grasped fractal complexity is very low with the standard boxes (cubes).
Clearly, the highest resolution image doesn’t not have a complexity close to
2.0, fact misindicated also by the lacunarity curves.

In Figure 3.22 we plot the corresponding N(δ) curves which clearly show
that the estimation of the texture complexity differs as a function of image
resolution.

(a) N(δ) (b) −log(N(δ)) vs. log(δ)

Figure 3.22: N(δ) curves for different resolutions of the same fractal image.

The underestimation is confirmed by the texture complexity analysis per-
formed using cooccurrence matrices. We performed a marginal analysis, per
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each color plane. In Figure 3.23 we show the overlaid cooccurrence matrices
computed on each color plane in RGB for pairs of adjacent pixels. As the
image resolution increases, the cooccurrence matrices indicate a dicreasing
complexity.

(a) 256x256 (b) 512x512 (c) 1024x1024 (d) 2048x2048

Figure 3.23: Overlaid RGB cooccurrence matrices.

For the fractional Brownian motion – the underlying model used for the
generation of the color fractal images in Figure 3.20 – it is known that the
pixel values VH(t) exhibit a statistical scaling behaviour: if the time scale t
is changed by a factor r, then the increments ΔVH change by a factor rH ,
where H is the Hurst factor used to control the complexity:

< ΔVH(rt)2 >∝ r2H < ΔVH(t)2 > (3.29)

If we consider the 256×256 fractal image as the original image, then the
2048 × 2048 can be coonsidered to be scaled by a factor r = 8, and given
that H = 0.5, the resulting scaling factor for the values is

√
8 ≈ 3. The

scaling fractor is used to adapt the size of the analysis boxes which become
parallelipipeds of size rδ. In Figure 3.24 we show how the fractal dimension
estimation improves on three of the scaled images as a function of the scaling
/ zoom factor.

(a) without weighting function (b) with weighting function

Figure 3.24: Estimated fractal dimension for various scaling/zoom factors.

The adaptation is mandatory in order to correctly estimate the fractal
dimension and to overcome the underestimation of the image complexity. If
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we knew the zoom factor, than we could adapt the complexity assessement
tools in order to correctly measure the image complexity. Unfortunately,
for a given image we don’t know the scale factor, and in addition, we don’t
know H which is the parameter we actually want to estimate!

3.5 An equivalent estimation approach

For the synthetic color fractal images we analyzed the vectorial (r, g, b) in-
crements by computing the 3D RGB histograms of the differences between
a pixel and its adjacent right neighbour. These histograms show the depen-
dancy of the color increments on the Hurst coefficient, and the Gaussian
shape of the represented distribution. This kind of statistical analysis is in
fact another way to estimate the Hurst factor H for fractal objects. For a
fractional Brownian motion, the increments obey the following relation [96]:

|X(ti +Δi)−X(ti)|2 = C2|Δi|2H (3.30)

where C is a positive constant different from zero.
The 3D RGB histograms of the increments for the color fractal images

allow to grasp the complexity of the color texture, i.e. the statistical com-
plexity between the RGB planes. If visually, in a qualitative manner, there is
a relationship between the size of the cloud in the 3D histogram, there must
be a quantitative relationship as well. We propose the following approach:
to compute the 3D RGB difference histogram (e.g. for the right neighbor),
then use PCA (Principle Component Analysis) in order to determine the
main direction of the cloud of points, then compute the volume of the cloud
of points in two ways: Δx×Δy ×Δz to take into consideration the whole
cloud or σx × σy × σz for the core of the cloud, as illustrated in Figure 3.25.

(a) 1st volume (b) 2nd volume

Figure 3.25: Volume definitions.

The algorithm is illustrated in Figure 3.26 for a color texture image
representing a human skin sample.
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(a) skin (b) 3D diff hist (c) after PCA

Figure 3.26: Algorithm illustration.

For synthetic color fractal images in Figure 2.3, the clouds of points of
the 3D RGB histogram are presented in Figure 3.27.

(a) H=0.1 (b) H=0.2 (c) H=0.3

(d) H=0.4 (e) H=0.5 (f) H=0.6

(g) H=0.7 (h) H=0.8 (i) H=0.9

Figure 3.27: Results synthetic color fractals.

The relationship between the computed volume and the estimated prob-
abilistic box-counting color fractal dimension is presented in Figure 3.28.
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(a) Volume 1 (b) Volume 2

Figure 3.28: Results synthetic color fractals.

For a set of 72 texture representing skin samples the following depen-
dency between the estimated color fractal dimension using the probabilistic
box-counting approach and the computed volumes. The curves are not lin-
ear, as one can see in Figure 3.29, but their analytic expression can be
inferred.

(a) (b)

Figure 3.29: Results on the set of 72 skin images.

The estimation based on the volume of vector increments is faster than
the probabilistic box-counting approach, despite the PCA. However, PCA is
mandatory for correctly estimating the volume of the clouds. Without the
PCA, the complexity may seem larger than it is. The approach we present
works for various color textures, both synthetic or natural, and in general for
any color image for which the 3D difference histograms exhibit an elipsoidal
shape (i.e. only one mode) - which is the hypothesis in our experiments.



Chapter 4

Morphological features

The features presented in this chapter fall within the framework of math-
ematical morphology (MM). This domain of mathematics was founded by
Matheron [83] and Serra [110] and constitutes a popular non-linear image
processing and analysis framework. MM was introduced for binary images,
the basic morphological operators being based on set theory [47]. The MM
extension to grayscale images is based on lattice theory, which implies a par-
tial ordering of the image data, such that an infimum and a supremum exist
for any subset of pixel values. The lattice structure perfectly fits the natural
ordering of real numbers, offering the possibility to define the morphological
operators for grayscale images. The extension to grayscale opened the doors
to more complex operations like filtering, segmentation or texture analysis
[114].

The extension of MM to color and multispectral images is not straight-
forward because of the vector image data, and consequently because of the
need to define a suitable ordering for vector data. Ordering schemes for
vector data have been classified in four groups [11]: marginal, reduced, con-
ditional and partial, each having its advantages and disadvantages, depend-
ing on their outcome with respect to application. For example, marginal
ordering introduces false colors and conditional ordering generates visual
non-linearities from a perceptual point of view [60]; reduced and partial
orderings are either relying on pre-orderings, thus lacking anti-symmetry,
or have a behavior similar to conditional orderings, generating perceptual
non-linearities. Various approaches have been proposed for color and mul-
tivariate MM [5], but none of them has been generally accepted as the
standard approach. A series of morphological frameworks for vector data
have been proposed recently: one using the color data distribution in a par-
tial ordering based on depth functions [122], a reduced ordering through a
graph-based approach using the Laplacian eigenmaps as a method for non-
linear dimensionality reduction [75], or a geometrical method based on the
Loewner order [16].

51
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On a parallel scientific path to the morphological approaches, where the
operators respect all the mathematical properties of the classical MM, var-
ious pseudo-morphologies have also been proposed. These frameworks do
not require an underlying ordering of the image data, instead they focus on
computing the two extrema of a given set [51] [4] [17]. These approaches
do not require a complete lattice structure, thus avoiding the definition of
a binary partial ordering relation on the vectorial data. Consequently, the
resulting operators do not respect the properties of the classical morpho-
logical operators. However, they could be of practical interest in various
applications, such as texture classification, noise reduction or multispectral
data processing [97] [7].

4.1 Mathematical morphology tools

4.1.1 Mathematical morphology for binary images

We recall briefly the basic operators used in binary MM. For their definition,
we need to define the concept of structuring element. This represents a set,
usually much smaller compared to the image, used to extract information
out of the analyzed image. The structuing element (SE) has an origin, size
and shape, and it can be placed anywhere within the image support by using
the translation. For a binary image F and the structuring element B, two
fundamental operations for MM, the erosion εB(F ) and the dilation δB(F ),
are defined as follows:

εB(F ) = {x | Bx ⊆ F} (4.1)

δB(F ) = {x | Bx ∩ F 
= ∅} (4.2)

where Bx represemts the structuring element B translated in the pixel x
of the original image. In Figure 4.1 we show an example for a disk SE having
a size larger than the size of the smallest elements in the original image.
One may notice how the erosion eliminates the image elements which are
smaller than the SE, while the dilation enlarges the objects and eliminates
the spaces which are smaller than the SE. The two operations obey the
property of duality [58]:

εB(F ) =
(
δB(F

C)
)C

and δB(F ) =
(
εB(F

C)
)C

(4.3)

where FC is the complement of image F .
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(a) εB(F ) (b) F (c) δB(F )

Figure 4.1: Examples of erosion (left) and dilation (right) for a binary image.

The meaning of morphological erosion is that it removes all structures or
objects that cannot contain the SE [114]. However, the erosion also shrinks
the other objects within the image. Therefore, an operation that recovers
most of the structures lost after erosion has been defined as the dilation of
the previously eroded image; and vice-versa. The two resulting operations
are called morphological opening γB(F ) and closing φB(F ):

γB(F ) = δB̌ [εB(F )] (4.4)

φB(F ) = εB̌ [δB(F )] (4.5)

where B̌ represents the symmetric of B with respect to its origin. In
Figure 4.2 we show the results of opening and closing for a binary image: the
elements which were eliminated previously by the erosion or dilation cannot
be recovered. Moreover, the narrow channels are removed by opening, while
object which are closer will be joined by closing - as a function of SE size.
For the large objects which are usually of interest within the image, the two
operation will recover the initial size, together with smoothing the edges.

(a) γB(F ) (b) F (c) φB(F )

Figure 4.2: Examples of opening (left) and closing (right) for a binary image.

The opening and closing are also dual operations:

γB(F ) =
(
φB(F

C)
)C

and φB(F ) =
(
γB(F

C)
)C

(4.6)
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In addition, they obey the property of idempotency, of extremely high
importance for the signal processing context:

γB (γB(F )) = γB(F ) and φB (φB(F )) = φB(F ) (4.7)

which means that applying one of the operation successively on the same
image, using the same SE gives the same result as applying the operation
just once. This property is most important for filtering, for example, because
it guarantees that the goal of the operation was reached.

4.1.2 Mathematical morphology for gray-scale images

The extension to gray-scale of the operations previously defined was per-
formed using the concept of umbră of a real function, which allows convert-
ing a function into a set and vice-versa [80] [55]. Let the following function
f be f : Df → R, with Df ⊂ Rn, then the umbra is defined as:

U(f) =
{
(x, y) ∈ Rn+1 | x ∈ Df and y ≤ f(x)

}
(4.8)

U(f) becomes thus a set of points in Rn+1. In order to retrieve the
function f , the top transform was defined for an (n+ 1)-dimensional set A:

T (A)(x) = max {y | (x, y) ∈ A, x ∈ An−1} (4.9)

where An−1 represents the projection of A on its first (n−1) coordinates.
The relationship between the two transforms, top and umbra, is: T (U(f)) =
f . In Figure 4.3 the two transforms are illustrated for an arbitrary real
function.

Figure 4.3: The umbra and top transforms of a real function.

Extending the morphological operations to gray-scale image domain was
done by transforming both the real function f representing the image and
the structuring element (or function) g into sets:

εg(f) = εU(g)(U(f)) (4.10)
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δg(f) = δU(g)(U(f)) (4.11)

A formalism for this operation was proposed by using the lattice theory
[105]. A lattice L is a set with a partial ordering where every non-empty
subset P ⊂ L has an infimum

∧
P, and a supremum

∨
P [34]. The

infimum of a set is the largest element, smaller or equal to every element
of that set, while the supremum is the smallest element which is larger or
equal to the elements of that set. A binary relation R is a partial ordering
of the set S if it respects the following properties [104]:

• reflexivity: xRx, ∀x ∈ S ,

• transitivity: xRy and yRw ⇒ xRw, ∀x, y, w ∈ S ,

• antisymmetry: xRy and yRx ⇒ x = y, ∀x, y ∈ S .

If only the first two properties are obeyed then R is called a partial
pre-ordering. If additionaly the total property is respected, i.e. every two
elements can be compared, then the order is called a total order. There
exist total pre-orderings which respect the reflexivity, transitivity and total
properties.

One can associate to the set of real numbers R a partial order ≤, with an
infimum,

∧
P and a supremum,

∨
P, for any subset P ⊂ R. Consequently

R is a lattice and therefore the mathematical morphology operators cand be
applied to gray-scale images modelled with real functions f : Df → S ⊂ R.
For f : Df → S and g : Dg → S where S is a lattice, the erosion and
dilation operations were defined as follows [58]:

[εg(f)] (x) =
∧

z∈Dg

(
f(x+ z)− g(z)

)
, ∀x ∈ Df (4.12)

[δg(f)] (x) =
∨

z∈Dg

(
f(x− z) + g(z)

)
, ∀x ∈ Df (4.13)

where
∧

and
∨

are the operators for computing the infimum and supre-
mum. Very often flat structuring elements are used, which are defined as
g(x) = 0, ∀x ∈ Dg; these SEs are characterized only by origin, shape and size
of the definition domain. In this case, the erosion and dilation operations
become:

[εg(f)] (x) =
∧

z∈Dg

f(x+ z), ∀x ∈ Df (4.14)

[δg(f)] (x) =
∨

z∈Dg

f(x− z), ∀x ∈ Df (4.15)
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For the gray-scale images, the erosions and dilations with flat SE are
equivalent to minimum and maximum rank filters. The opening and closing
operations can also be defined for functions using equations (4.4) and (4.5).
These operations are usually used for image filtering.

4.1.3 Applications and texture feature extraction

Starting from the four fundamental morphological operations, complex im-
age analysis and feature extraction operations can be defined. The morholpg-
ical gradient [102] was defined and is being used for edge detection in the
context of image segmentation. Its definition is the following:

ρg(f) = δg(f)− εg(f) (4.16)

In Figure 4.4 we show its application on a gray-scale image, using a 3×3
square shaped SE.

(a) Original image f (b) ρg(f)

Figure 4.4: Edge detection using morphological gradient.

Another application is the covering blanket approach. Serra proposed in
[110] the usage of morphological erosion and dilation for producing envelopes
for fractal objects, and implicitely for fractal images, with the purpose of
estimating the Minkowski-Bouligand dimension. This idea was further de-
veloped in [94] and [81]. The goal of the covering blanket approach is to
compute the volume of surfaces representing gray-scale images by using var-
ious sizes for the SE used to obtain the envelopes. The volume, computed
for the SE g, is given by:

Vg(f) =
∑
x∈Df

{[δg(f)] (x)− [εg(f)] (x)} (4.17)

By varying the size of SE, we can apply the ecuation 3.26 for the com-
putation of the Minkowski-Bouligand dimension. In Figure 4.5 we show
three fractal images of various complexity and the estimated Minkowski-
Bouligand dimension. One can notice that a correct ranking of texture
complexity can be obtained by estimation the MB dimension, allowing thus
for further applications like classification and segmentation.
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(a) dimMB = 2.48 (b) dimMB = 2.28 (c) dimMB = 1.98

Figure 4.5: Fractal images and their estimated MB dimension.

Two approaches of texture feature extraction, based on MM, have been
also introduced by Serra: granulometry (or pattern spectrum) and morpho-
logical covariance [110]. Both approaches are based on the computation
of the volume of images. We can consider gray-scale images as surfaces
z = f(x, y) in a 3D space. Consequently the volume of such surface, for the
continuous case, can be computed as the integral over the definition domain:

V (f) =

¨

Df

f(x, y)dxdy (4.18)

For digital images represented as discrete surfaces, the volume becomes:

V (f) =
∑∑
(i,j)∈Df

f(i, j)× 1× 1 =
∑∑
(i,j)∈Df

f(i, j) (4.19)

where 1 × 1 = dx × dy represents the size of one pixel. Therefore the
volume of an image is the sum of all pixels.

By definition, the granulometry of an image f , using the SE g, is the
function [Γg(f)](n) = Vγng(f), where ng represents the SE g magnified n
times. In other words, the granulometry of an image is given by the evolution
of the image volume after applying the opening operation, as a function of
the SE size [114]. See Figure 4.6 for an example: the granulometry function
is directly linked to the size distribution of the objects within images. This
is why granulometry is also called pattern sectrum.

(a) (b)

Figure 4.6: Granulometry of a binary image.
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Figure 4.7 shows three gray-scale texture images with the corresponding
granulometry functions. The computed volumes are normed by the vol-
ume of the initial image, to enable a fair comparison. In [113] the notion
of pseudo-granulometry was proposed, by using the morphological erosion
instead of morphological opening: [Γ′

g(f)](n) = Vεng(f).

The morphological covariance K(f) of an image f is defined as the vari-
ation of the volume of the image after erosion using a SE of the form P2,�v,

representing a pair of points separated by a vector �d: [K(f)][d] = VεP2,d
.

Morphological covariance is a function of two variables: the vector’s direc-
tion and its length. The classical approach in computing this function is to
fix a direction for d and to vary its length. Similar as for the definition of
the cooccurrence matrix, the vector d = (dx, dy) determines the spatial re-
lationship between the two points forming the SE. Computing this function
for various orientation of the vector d, one can obtain texture features that
can be used for classification, indexing or segmentation. Figure 4.7(e) shows
the morphological covariance vectors computed on the horizontal direction,
using 20 values for the module of vector d (from 1 to 20). Morphological
covariance reflects the contrast on the analyzed direction, its variation being
larger for Bark compared to Floor, while for Textil one may notice a certain
periodicity. The same variation could be seen for Bark, if larger values for
the vector size would be used.

(a) Bark (b) Floor (c) Textil

(d) Granulometries (e) Morphological covariance

Figure 4.7: Three textures (a, b, c) and their granulometries (d) and mor-
phological covariance (e).

Defined within the grayscale framework, all these morphological tools
may be applied locally in a straightforward manner, using a sliding window,
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resulting in two feature vectors for each pixel (one for granulometry and the
other for morphological covariance), which may be used in texture classifi-
cation. Image segmentation, for instance, can be performed by taking into
consideration such local texture features [114]. However, the application of
these approaches to multivariate images is not straightforward, since erosion
and dilation are based on pixel ordering, which is not a trivial problem for
vector data.

4.1.4 Mathematical morphology for color images

Color images are vector functions S ⊂ R3 and in order to use mathematical
morphology it is mandatory to define a partial order for vector data. In [11]
the vector orders were classified in four classes: type M (marginal), type R
(reduced), type P (partial) and type C (conditional).

Type M ordering is performed on every component of the vectors:

∀v,v′ ∈ Rn, v < v′ ⇔ vi < v′i, ∀i ∈ {1, · · · , n} (4.20)

where vi is the ith component of vector v. There exist situations when
vectors cannot be compared, for instance the vectors u,w ∈ Rn, for which it
exist ui < wi and wj < uj with i, j ∈ {1, · · · , n}. If one wishes to construct
an infimum and a supremum for a set using this type of ordering, the two
extrema may not belong to the initial set. For instance, for the set of two
vectors P = {[1, 2]; [2, 1]}, the extrema are

∧
P = [1, 1] and

∨
P = [2, 2],

none of them belonging to the initial set P. In the context of color images,
this issue is referred to as false colors – colors which do not belong to the
initial image. However, this type of order is used for various approaches of
MM for color images, the resulting operatos being used for segmentation or
object tracking [49].

Type R ordering . In this case, vectors are reduced to scalar values and
then ordered. The reduction is usually performed through a transformation
h : Rn → R, used for ordering two vectors v and v′asfollows:

∀v,v′ ∈ Rn, v < v′ ⇔ h(v) < h(v′). (4.21)

Very often the transformation h is not injective. For instance, [30] uses
a linear combination of the vector components and [39] proposes the sum
of distances between a vector and the rest of the set. The disadvantage
of this approach relies in the fact that for different vectors the same scalar
value may result, which implies that the two vectors are considered identical.
Consequently the antisymmetry property is not obeyed, therefore the R type
orderings are pre-orderings. In order to obtain an order which can be used
for MM operations an additional condition is required. For instance, in [30]
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the position of vectors within the SE is used, while in [39] another type of
order is used (type C) to avoid any ambiguity. If the h transform is injective,
then all the aforementioned issues are overcome.

Type P ordering consists of partioning the vector set into equivalent
subsets that can be ordered according to a certain criterion. An example
is given by splitting the probability density function of the vector data into
convex hulls: the rank of each vector is given by the position of the convex
hull to which it belongs, with respect to the center of the distribution. Such
an approach was proposed in [121] by using a depth function.

Type C ordering is based on certain components of the vector, chosen
and prioritized as a function of pre-determined criteria. The ordering of
vector data is performed based on the first chosen compnent - if the value
is the same for the vectors to be ordered, the next component is considered
and so on:

∀v,v′ ∈ Rn, v < v′ ⇔ ∃i ∈ {1, · · · ,m}, m ≤ n, so that

∀j < i, vj = v′j , and vi < v′i
(4.22)

If m < n then a pre-ordering is generated when two or more vectors can
be considered equal if they have the firstm component equal [120]. Ifm = n,
the ordering is called lexicographic and is a total ordering. The lexicographic
order is very popular for extedning the morphological operations to the color
image domain [78] [50] [52]. One of the disadvantages is the need to impose
a priority between the vector components, which is inapropriate for various
color spaces. For example, in RGB all three components have the same
importance and difficult to establish a priority between them.

This type of ordering is considered when between the components of
the color space one can establish an evident priority: such color spaces are
the ones with one luminance and two chrominance components (e.g. HLS,
CIELAB), for which the luminance can have the highest importance, since
the human visual system is more sensitive to changes in intensity, rather
than in chrominance. An example of such use case is [3].

Another disadvantage is that it generates perceptual nonliniarities [119].
Consider the following example (RGB, 8 bits per channel): if R has the
highest priority, followed by G and B, the following order will be generated
for three colors: (0, 0, 255) < (0, 255, 0) < (1, 0, 255) , which evidently
exhibits a nonlinearity from human perception point of view, the two shades
of blue being almost identical.



4.2. PSEUDO-MORPHOLOGIES 61

4.2 Pseudo-morphologies

Besides the attempts to extend the morphological operations to the color
domain by using the order relations between vectors previously presented,
there exist approaches that aim at computing the infimum and supremum of
a given set without imposing an order. Such an approach is called pseudo-
morphology because it doesn’t fit into the classical framework of mathe-
matical morphology, by not using the lattice structure. Consequently, some
properties are not respected. For example, if one uses only the statistical
distribution for defining an order, that order may lack transitivity. Generally
speaking, pseudo-morphologies do not obey all the properties of the classi-
cal gray-scale mathematical morphology, like duality between erosion and
dilation or idempotence. Despite that fact, pseudo-morphologies may have
practical application: in [51] authors propose a pseudo-morphoogy based
on the Hue component from the HLS color space which is used for texture
analysis. In [7] vectors are ordered based on one of their component and a
parameter called α ∈ (0, 1) is used to determine the percentage of vectors
being selected, then the selected vectors are ordered based on the second
component and so on so forth. This approach is called α-trimmed and it is
used for image filtering and texture classification.

4.2.1 Probabilistic pseudo-morphology

In [60] we proposed the estimation of infimum and supremum by using the
Chebyshev inequality, which allows estimating the probability of a subset of
vectors to belong to an interval centered around the mean of the distribution
[25]. Let ξ be a random variable with mean μξ and standard deviation σξ,
then the Chebyshev inquality states that:

P{|ξ − μξ| ≥ kσξ} ≤ 1

k2
(4.23)

Eq. (4.23) stands for any distribution with finite mean and standard
deviation [91]. Using the k parameter, one may generate symmetric intervals
around the mean, with the two extrema being closed to the mimimum or
maximum value as a function of value k. The two extrema that give the
limits of those intervals are specified by eq. (4.24). Consequently we define
the probabilistic pseudo-extrema of a distribution, E+ and E−, as specified
by Chebyshev inequality:

{
E+ Δ

= μξ + kσξ

E− Δ
= μξ − kσξ

(4.24)

By chosing an appropriate value for k, the error between the probabilistic
extrema and the real extrema of a distribution can be reduced as desired.
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This errror, however, cannot be zero due to the fact that the real minimum
and maximum are not symmetric with respect to the mean.

In [17] we used this approach to propose a probabilistic pseudo-morphology
(PPM) for grayscale images. Given an image f : Df → S ⊂ R, and a flat SE
g having the support Dg, we defined the pseudo-erosion and pseudo-dilation
operations as follows:

[εg(f)](x) =
∧

z∈Dg

f(x+ z)
Δ
= μξ − kσξ, ∀x ∈ Df (4.25)

[δg(f)](x) =
∨

z∈Dg

f(x− z)
Δ
= μξ + kσξ, ∀x ∈ Df (4.26)

where ξ represents a random variable which models the gray level of pix-
els falling within Df ∩Dg. Thus the mean μξ and standard deviation σξ are
computed locally, within a neighborhood given by the size and position of
the SE. The value of parameter k can be determined globally, for example
based on image histogram, which is an estimate of the probability density
function of the random variable ξ. For instance, for Lena image, a k value
around 2 gives the smallest extrema estimation error [17] and the probabilis-
tic extrema are closest to the real extrema computed within the framework
of the classical gray-level mathematical morphology (GLMM). According to
Chebyshev inequality, for k = 2, there exists a probability smaller than 25%
that any pixel value can be outside the interval determined by the proba-
bilistic extrema. However, the shape of the distribution may have an impact
to the estimation of the probabilistic extrema: if the 3rd order moment, the
skewness, is large, then one the extrema falls within the interval of interest,
while the other may be far away considerably. In what follows, we present
a qualitative evaluation of the results for three different values of k.

k = 0.2 The probabilistic pseudo-extrema are close to the mean value and
consequently the behaviour of the PPM operations is similar to a smoothing
filter (see Figures 4.8(a) and 4.9(a)), thus being close to linear filters rather
than non-linear morphological ones.

k = 2 This is an optimum value for Lena image: by comparing the images
in Figures 4.8(b) and 4.9(b) with the ones from Figures 4.8(d) and 4.9(d) one
may observe the results are similar for PPM and GLMM. Some differences
occur, naturally: the classical morphology introduces artefacts (e.g. top of
the hat in Fig. 4.8(d)). Due to the intrinsic statistical filtering of PPM, the
resulting pseudo-eroded image does not exhibit such artefacts, the shape of
the SE not being visible. In addition, PPM is capable of preserving morpho-
logical details (e.g. nose and eyebrows in Figure 4.8(b)) and texture (e.g.
hat feathers in Figure 4.9(b)). All these prove that PPM is less influenced
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by the local noise, the morphological or textural structures being preserved
better than GLMM.

k = 4 When k has such a large value, the probabilistic extrema are far
away from the local mean, being pushed towards black and white, the ex-
trema of gray-scale (Figures 4.8(c) and 4.9(c)). This case can be similar to
classical MM using non-flat SE.

(a) PPM, k = 0.2 (b) PPM, k = 2 (c) PPM, k = 4 (d) GLMM

Figure 4.8: PPM erosions for various values of k compared to GLMM, both
using a flat SE of size 11× 11.

(a) PPM, k = 0.2 (b) PPM, k = 2 (c) PPM, k = 4 (d) GLMM

Figure 4.9: PPM dilations for various values of k compared to GLMM, both
using a flat SE of size 11× 11.

4.2.2 Probabilistic color pseudo-morphology

For color images the pixel values are vectors, the images being modeled as
f : Df → S ⊂ R3. In order to extend PPM to color domain, we need to
correctly evaluate the variance of the data, for the purpose of using the same
Chebyshev inequality. In [17] we used the Principal Component Analysis
(PCA) applied on the innitial set of vectors representing pixel colors. PCA
is a linear transformation of the data set which identifies a new space, i.e.
a set of orthogonal directions, so that the variance is maximized on one
of those directions [92]. The directions of the transformed space are the
eigenvectors of the covariance matrix. The new coordinate system consists
of new axes called principal components - the variance of data is maximum
along the first component, smaller along the second, and so on so forth, the
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variance being the smallest on the last principal component. For the RGB
color space there is high correlation between components and consequently
PCA is appropriate for assessing the variance of the data along the first
principal components. Moreover, the probabilistic pseudo-extrema can be
estimated along this first component using the Chebyshev inequality (4.24).

This approach is similar to using PCA for lossy data compression, when
only the components with high variance are retained, ignoring the rest [66].
In addition, if one uses more components with relatively high variance of
the data, the number of probabilistic pseudo-extrema increases, introducing
ambiguity: if the first two components are used, then using the Chebyshev
inequality, four pseudo-extrema will be generated. In Figure 4.10 this case
is illustrated.

Figure 4.10: Computing probabilistic pseudo-extrema of a bi-dimensional
data set (white dots): using the first principal component (light gray dots)
or using the first two principal components (dark gray dots).

However, this approach cannot be used straightforward, because after
applying PCA there is still an issue to solve, due to the vector nature of
data: the two extrema have to be ordered and labeled as minimum and
maximum. For the gray-scale images, the two probabilistic extrema are im-
plicitely ordered, based on the order of real values. PCA determines only the
direction of the principal components without associating a sense to them.
However, we still can establish an order between two points on a certain
direction, if that directions has associated a sense. When PCA is used this
sense cannot be associated automatically to every eigenvector because PCA
is a linear transformation based on a rotation of the space and the rotation
can be performed in two ways along a given axis. In [17] we ordered the
pseudo-extrema constructed on the first principal component using 3 pairs of
3-dimensional reference points with an a priori order imposed or chosen for
each pair. The same approach can be used for n-dimensional spaces and thus
applied for multi- or hyper-spectral images as well. The ordering process
is the following: the first pair of references determines an ordered direction
from the smaller reference to the larger reference; the pseudo-extrema are
projected on this direction and are being ordered based on the order of their
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projections; if the two projections coincide (when the direction determined
by the pseudo-extrema is perpendicular on the direction determined by the
references) the next pair of reference points are used and so on so forth. The
process is illustrated in Figure 4.11, where an a priori ordering is considered
between the reference points R+ > R− therefore the pseudo-extrema Eα

and Eβ obey the order Eα > Eβ .

Figure 4.11: Ordering Eα and Eβ using the ordered references R− and R+.

Using the same rationale, the probabilistic pseudo-morphology can be
extended to multispectral images as well. The only issue is chosing the
appropriate pairs of ordered references depending on application. In [18],
the references were automatically computed as the global pseudo-extrema
on each principal component determined on the entire color distribution of
the image. In this way, three pairs of references were obtained:

(
R −
1 ,R +

1

)
,(

R −
2 ,R +

2

)
,
(

R −
3 ,R +

3

)
, with R −

i < R +
i . The ordering of the references was

perfomed by using their projections on the black-white axis. Using these
references, the two pseudo-morphological operations, dilation and erosion,
can be defined for color images (denoted f), for a structuring element g
having the support Dg, as follows:

[εg(f)](x) =
∧

z∈Dg
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Δ
=

=

⎧⎪⎪⎪⎨
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(4.27)
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where
−−−−→
R −
i R +

i is the ordered direction determined the references R −
i and

R +
i , and Eα and Eβ represent the local pseudo-extrema of the colors within

the support of the structuring element. The steps of the algorithm are:

• step 1: determining the three pairs of references (R1α,R1β), (R2α,R2β),
(R3α,R3β) as the global pseudo-extrema generated for the entire image
color distribution, using the Chebyshev inequality on each principal
components;

• step 2: ordering the three pairs of references based on their projections

on the back-white1 direction (denoted
−−→
BW ):

Riα < Riβ if
−−−−→
RiαRiβ · −−→BW ≥ 0 (4.29)

• step 3: estimating the local pseudo-extrema Eα and Eβ using Cheby-
shev inequality applied on the first principal component (or the next
ones, if the case) computed locally within the structuring element sup-
port;

• step 4: ordering the local pseudo-extrema and computation of the
pseudo-dilation and erosion.

In Figure 4.12 few results using the PPM approach on the ”Miro” image
are presented. All operations were applied in RGB color space, since its
components are highly correlated and thus using PCA makes sense.

(a) ε(f), k = 1.5 (b) ε(f), k = 0.2 (c) Miro (d) δ(f), k = 0.2 (e) δ(f), k = 1.5

Figure 4.12: Pseudo-erosion and dilation for ”Miro” image using a flat SE
size 11× 11 and two values for the parameter k.

A similarity between the color and gray-scale approaches can be noticed:

• The pseudo-dilations make the image lighter, while pseudo-erosions
make it darker, as a consequence of using the black-white axis for
ordering the reference colors;

• A low-pass filtering effect is introduced, intrinsic to the statistical pro-
cess being used; in addition, the local pseudo-extrema do not vary
significantly for consecutive pixels while sweeping the structuing ele-
ment over the image;

1Depending on application, any other two colors can be chosen.
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• The influence of the parameter k value of the Chebyshev inequality is
similar: a small value determines a results similar to a smoothing filter,
while a large value determines a non-linear behaviour; very large values
can determine vectors outside the local distribution, or even outside
the color space.

The defined pseudo-morphological operations can be used for edge de-
tection, by computing the Beucher morphological gradient as the difference
between the dilation and erosion. Figure 4.13 shows the results obtained in
two cases: the marginal substraction between pseudo-dilation and pseudo-
erosion, thus the result is a color image 4.13(a)) and the Euclidian distance
between pseduo-dilation and pseudo-erosion, thus the result is a grey-scale
image 4.13(b)).

(a) Marginal diff. (b) Euclidian dist.

Figure 4.13: Beucher gradient: marginal substraction (a) and Euclidian
distance (b) between pseudo-dilation and pseudo-erosion with a 3× 3 SE.

Due to the estimation of pseudo-extrema using the Chebyshev inequal-
ity, the two vector values may not belong to the initial set, therefore false
colors may appear. As k is larger, so the probability of introducing false
colors. However, the two pseudo probabilistic operations obey the property
of duality (see [60] for the demonstration). The opening and closing opera-
tions that could be constructed using the pseudo operators do not obey the
idempotence (eq. 4.7).

4.2.3 Maximum distance pseudo-morphology

Given an image represented in the CIE Lab color space, f : Df → R
3, with

the support Df ⊂ Z
2, we define the two pseudo-extrema in the support Dg

of the flat structuring element (SE) g, as:

{ea, eb} = arg max
f(i),f(j)

d(f(i), f(j)), ∀i, j ∈ Df ∩ Dg (4.30)

where d(·, ·) represents the CIE Lab ΔE distance [112]. The approach

involves computing N(N+1)
2 distances between the pixels covered by the SE,

where N = card(Dg).
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After choosing the two pseudo-extrema for the local window, the issue
of labeling them can be solved in various ways, as a function of the desired
outcome of the pseudo-morphological operators. Labeling can be done based
on distances to the black-white axis or to reference or convergence colors [17]
[18]. In the present work, lexicographic ordering <� is used in order to label
the two obtained values and define the pseudo-morphological operators:

∀v,v′ ∈ R
n,v <� v

′ ⇔ ∃i ∈ {1, ...n}, (∀j < i, vj = v′j) ∧ (vi < v′i) (4.31)

We define the pseudo-erosion as the minimum, in the lexicographical
sense, of the two previously computed pseudo-extrema:

[εg(f)](k) = min�{ea, eb} ∀k ∈ Df (4.32)

The pseudo-dilation is defined as the lexicographic maximum of the
pseudo-extrema:

[δg(f)](k) = max�{ea, eb} ∀k ∈ Df (4.33)

The choice of using the CIE Lab color space instead of RGB for the
definition of the pseudo-morphological operators is justified first of all by the
visually similar results to classical morphology. Secondly, by the linearity of
the space with respect to the ΔE distance, which ensures a low probability
of encountering more than two points locally that satisfy condition (4.30).

For the practical implementation using the CIE Lab color space, in the
lexicographic ordering of the pseudo-extrema, the order of the channels is L,
a, b; the L channel is prioritized, thus, generally, the minimum is darker and
the maximum is brighter. Consequently, the behavior of the defined pseudo-
morphological operators is similar to the classical fundamental operators
(erosion darkens the image, dilation brightens it).

For multispectral images f : Df → R
n, we use the same definition for the

pseudo-extrema, with the distance measure now representing the Euclidean
distance in R

n. The results of using lexicographic ordering to label the
pseudo-extrema would have no relevance, thus we use a total pre-ordering
<e based on pixel energy:

∀v,v′ ∈ R
n,v <e v

′ ⇔
n∑

i=1

vi
2 <

n∑
i=1

v′i
2

(4.34)

Thus we define the pseudo-erosion and pseudo-dilation for multispectral
images as the minimum and the maximum, respectively, in the energy sense,
of the two pseudo-extrema.

Figures 4.15 and 4.16 present the results of applying the color pseudo-
erosion and pseudo-dilation operators with various SE sizes on the two color
texture images from Figure 4.14 from CAVE2 data-base, Columbia Univer-

2http://www.cs.columbia.edu/CAVE/databases/multispectral/
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sity, New York. One may notice that the lighter features are increasing in
size for the pseudo-dilation, as is the case with the darker features for the
pseudo-erosion, this behavior being similar to the effect obtained through
classical morphological operators.

(a) Pompoms (b) Cloth

Figure 4.14: Original multispectral images (rendered as RGB).

Figure 4.15: Pompoms pseudo-erosions (top) and pseudo-dilations (bottom)
for various SE sizes: 3× 3, 5× 5, 7× 7, 9× 9 (left to right).

Figure 4.16: Cloth pseudo-erosions (top) and pseudo-dilations (bottom) for
various SE sizes: 3× 3, 5× 5, 7× 7, 9× 9 (left to right).
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The two images were also used for a qualitative assessment of pseudo-
granulometry (4.36) and morphological covariance (4.39). We used three
versions of the test images: grayscale, color and multispectral (31 channels).
The length of the pseudo-granulometry vector is equal to the number of SE
sizes used; morphological covariance was applied for 4 orientations of �v (0◦,
45◦, 90◦ and 135◦), resulting in a feature vector with a length of four times
the number of iterations for a given direction. Before plotting the images,
the vectors were normed with the sum of all values in the vector.

4.3 Covering blanket

In Section 3.2.4 we presented the covering-blanket approach for fractal di-
mension estimation. The upper and lower covers can be obtain by mor-
phological dilations and erosions. This expression is a reduced form of the
complete expression from Maragos [81] and used by Soille in a first imple-
mentation of the algorithm [102]. This approach is used for the estimation
of the Minkowski-Bouligand fractal dimension (eq. 3.26) of textures for the
purpose of classification based on their estimated complexity. As previously
shown in Section 3.2.2, color images can be modeled as 5-dimensional ob-
jects. Therefore the covering blanket approach raises the issue of computing
the variation of the volume between the hyper-surfaces determined by the
dilations and erosions of a color image for various sizes of the structuring
element.

We compared the following morphology and pseudo-morphology frame-
works to estimate the color fractal dimension of the color fractal images from
Figure 2.3 using the covering blanket approach: (i) the probabilistic pseudo-
morphology (PPM) described in Section 4.2.2; (ii) the pseudo-morphology
based on the computation pseudo-extrema along the first principal compo-
nent (PM 1PCA) [17] [18]; (iii) a morphology based on the lexicographic
order (eq. 4.22) applied in HSV color space, with V having the largest pri-
ority, followed by S and H [78] and (iv) the α-trimmed pseudo-morphology
[7] in RGB, with R having the largest priority, followed by G and B. The
results are presented in Figure 4.17. Covering blanket using PPM gives the
highest dynamic range, allowing for a better discrimination of textures based
on their estimated complexity.

In Figure 4.18 (a) we compare the results we obtain for the gray-scale
fractal images against the results we obtain by using covering blanket based
on the classical morphology. The theoretical fractal dimension is plotted
for reference. The fractal dimension is slightly over-estimated but the slope
is almost the correct one when using our probabilistic approach, while for
the classical morphology the fractal dimension is well under-estimated and
the slope is different. We also performed the comparison (in Figure 4.18
(b)) between color covering blanket using PPM and the probabilistic box-
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Figure 4.17: Estimated Minkowski-Bouligand fractal dimension using cov-
ering blanket for color fractal images in Fig. 2.3.

counting estimation based on Voss’ expression. The comparison, plotted
as mean values and standard deviation for a set of repeated experiments,
shows the linearity of the behavior obtained by the color covering blanket
approach, in particular for images of high complexity (small Hurst coefficient
values). This property is clearly highly important to validate our approach
for color image processing. More results of comparison can be found in [61].

(a) grayscale (b) Voss

Figure 4.18: Comparison against various estimation methods.

The approach based on PPM is not subject to the non linearity effects
of vector ordering. Moreover, from a human visual perception point of
view, the main issue of such an approach is the appearance of false colors,
the consequence of the fact that the maximum and the minimum may not
belong to the initial set, due to the way they are constructed. Further
more, sometimes the extrema are outside the RGB color space, therefore
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they cannot be rendered for display or print. Last but not least, we showed
that color complexity can be measured in the RGB color space. Clearly
enough, a bias is introduced by the color fractal generator, but nevertheless
we used the color fractal images to validate the theoretical approach and the
experimental implementation. The results showed that the statistical model
embedded in the expression added robustness to the metrological process
and this feature is extremely useful in the case of natural or noisy images.

4.4 Granulometry or pattern spectrum

The granulometry is an important feature based on opening and computing
the volume of the image after applying the opening operator, as a func-
tion of the size of the structuring element. In [19] we showed that the
morphological operation for color images, as defined so far in the litera-
ture, cannot be properly used to define a granulometry function. Moreover,
for the pseudo-morphologies we proposed the opening does not obey the
idempotence property, therefore we proposed in [19] the usage of pseudo-
granulometry (eq. 4.36) for texture discrimination. Its definition used ero-
sion insteand of opening.

In Figure 4.19 we show the pseudo-granulometry for 15 sizes of the struc-
turing element, from 3× 3 to 31× 31 for the color texture images in Figure
3.10. The results are obtained using two pseudo-morphologies: PPM and
PM 1PCA. One may note that these features do not allow an interpretation
directly connected to the pattern spectrum of the image. However, they can
be used for texture discrimination.

The volume of a color image was modelled as a hyper-surface in a 5-
dimensional space determined by two spatial and three chromatic coordi-
nates (for instance RGB). Thus, extending eq. 4.19 to such a model, the

(a) PPM (b) PM 1PCA

Figure 4.19: Pseudo-granulometries for images in Figure 3.10.
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volume becomes:

V (f) =
∑∑
(i,j)∈Df

fR(i, j)× fG(i, j)× fB(i, j) (4.35)

where fR, fG and fB represent the color coordinates of the pixel at spa-
tial position (i, j). Based on this definition of the volume, in [19] a new
expression of the pseudo-granulometry was proposed, based on the evalu-
ation of the difference between the volume of the initial image f and the
eroded with the structuring element g:

[Γ′′
g(f)](n) = ΔVεng(f) (4.36)

The difference ΔVε(f) between the two volumes is defined as:

ΔVε(f) = V (f)− V (ε(f)) =
∑∑
(i,j)∈Df

d(f(i, j), ε(f)(i, j)) (4.37)

where d (f(i, j), ε(f)(i, j)) is the distance between the pixel values from
the original image and the eroded one. This distance has to be appropriately
chosen for grayscale, color or multispectral images.

By using this definition of the pseudo-granulometries for the images in
Figure 3.10, the results presented in Figure 4.20 are obtained.

(a) PPM (b) PM 1PCA

Figure 4.20: Pseudo-granulometries based on erosion for images in Figure
3.10 using 15 sizes of the structuring element.

Another version of granulometry was introduced by [113] based on ero-
sions instead of openings. Using the maximum distance-based pseudo-
morphology, we obtain the results in Figures 4.15 and 4.16 which indicate
that erosion would be unhelpful in situations when the background tends
to distort objects for large SE sizes. Consequently, another definition we



74 CHAPTER 4. MORPHOLOGICAL FEATURES

proposed in [29] uses dilation as the underlying operator for the pseudo-
granulometry: [Γg(f)](n) = Vδng(f).

Figure 4.21 depicts the pseudo-granulometries for three versions of the
Pompons and Cloth images: grayscale, color and multispectral. There are
10 measurement points corresponding to SE sizes from 3 × 3 to 21 × 21S.
All the three curves have a similar evolution, they only diverge slightly for
large SE sizes.

(a) Pompoms (b) Cloth

Figure 4.21: Pseudo-granulometries based on maximum distance.

4.5 Morphological covariance

Morphological covariance is another texture characterisation technique based
on morphological operations, which is defined as the variation of the volume
of an image as a function of successive erosions using a structuring element
composed of two points with a given spatial distance between them (see sec-
tion 4.1.3). In [17] we proposed the extension of this texture feature to color
images using PPM. Due to the fact that the underlying pseudo-morphologies
usually require a set of data to compute the two pseudo extrema, in [7]
the usage of a composite structuring element was proposed instead of just
two points. The results are presented in Figure 4.22 using two SEs of size
3 × 3 and the distance between them varied in 25 steps on four directions
(0◦, 45◦, 90◦, 135◦).

The same issue of image volume computation stands both for color and
multivariate images. We showed already how a first approach is to compute
marginal volumes on each channel, with the volume of the image resulting as
the sum of the marginal volumes. Another approach would be to compute
the difference between the volume of the original image f and the volume
of the morphologically processed image fmp [17]:

ΔVf,fmp =
∑
i∈Df

d(f(i), fmp(i)) (4.38)
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(a) PPM (b) PM 1PCA

Figure 4.22: Morphological covariance based on pseudo-morphologies for the
texture images in Figure 3.10.

where d(·, ·) is the absolute value of the difference in the case of grayscale im-
ages, the CIELAB ΔE distance in the case of color images and the Euclidean
distance for multispectral images. The results are presented in Figure 4.23
using two SEs of size 3×3 and the distance between them varied in 25 steps
on four directions (0◦, 45◦, 90◦, 135◦)

(a) PPM (b) PM 1PCA

Figure 4.23: Morphological covariance based on pseudo-morphologies for the
texture images in Figure 3.10 using the volume difference in eq. 4.38.

If we consider the maximum distance-based pseudo-morphology, the orig-
inal definition of the morphological covariance using just a pair of points
would not be useful either: for the color images case, pseudo-erosion would
simply be the lexicographic minimum in the CIELAB space between the two
points covered by the SE. Consequently, we chose again for the computation
of the morphological covariance a composite SE like in [6], composed of two
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subsets of points separated by a vector �v. We also use pseudo-dilation in-
stead of pseudo-erosion, for the reasons mentioned above and the definition
becomes:

[K(f)][�v] = VδP2,�v
(f) (4.39)

The results are presented in Figure 4.24, ilustrating the morphological
covariance computed using 10 iterations for each orientation, exhibiting a
great similarity for the three types of images. The volume computation is
based on eq. 4.38.

(a) Pompoms (b) Cloth

Figure 4.24: Morphological covariance curves.



Chapter 5

Applications

In this chapter we focus on image segmentation both for color and multi-
spectral images. We discuss also about texture classification in this context
of image segmentation. Since the world of image became colored, the seg-
mentation approaches became more sophisticated. In many publications,
approaches for gray-level image segmentation are presented by authors who
afterwards claim that most of the techniques can be extended to color or
multi-spectral images as well. However, the extention of scalar operations
to vectors is not straight-forward, therefore the same approaches for gray-
scale images should not be applied as they are to the color domain, but they
should rather be adapted accordingly.

The purpose of the current chapter is to present the several image seg-
mentation frameworks that are built on features and tools presented in the
previous chapters. The reader is advised to read the chapters on segmen-
tation from a couple of classical books in image processing, i.e. [66] and
[46] for a complete understanding of the basics on image segmentation. The
theoretical concepts that form the ground for all segmentation approaches,
e.g. similarity, discontinuity and pixel connectivity [44], [46] [131], constitute
the prerequisites for the easy-reading of this chapter.

5.1 Image segmentation

Image segmentation is the process of dividing an image into regions accord-
ing to predefined criteria. The resulting regions are called segments. Seg-
mentation is often followed by further image analysis, like object detection
or recognition. Errors in the segmentation process may lead to inaccuracies
in any subsequent analysis [127]. It is thus worthwhile to produce an image
segmentation, that is as accurate as possible with respect to application re-
quirements. The initial hypothesis is that each resulting region or segment
represents an object in the original image, in other words each segment is
semantically meaningfull, which greatly facilitates the image content analy-

77
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sis and interpretation. A learning phase or classification can follow in order
to associate the segments to terms describing the content of the image, like
annotations, or, in other words to map the pixelic content to the semantic
image description. Historically, image segmentation was the center point
of computer vision – the processing and the analysis procedures aimed at
helping the robots to detect simple geometrical objects based on line and
circle detection.

For gray-scale images the segmentation techniques were always divided
in two major classes: contour- and region-oriented, followed recently by
more elaborated techniques based on features. Sometimes, depending on
application, segmentation may not be required as certain points of interest,
like corners are detected [84] [57]. According to Fu [44], the segmentation
techniques can be categorized into three classes: (i) characteristic feature
thresholding or clustering, (ii) edge detection and (iii) region extraction. In
[90] there are six categories identified, which are finally reduced to the same
three already mentioned. We shall focus on region-segmentation, without
considering edge detection in the context of color and multispectral images as
it was partially addressed in Chapter 4. Moreover, the widely-used technique
of edge detection [20] is nowadays performed on the feature images, in order
to detect ruptures in the color texture, for instance.

Segmentation evolved in the last two decades, from the initial exploratory
approaches mostly in the pixel value space to feature-space-based techniques,
and in addition it became multi-resolution and multi-stage. The image is
analyzed at various resolutions, from a rough or coarse view, to a fine and
detailed one (see Figure 5.1). In addition, the image segmentation process
is performed in several stages, starting with a pre-processing phase whose
purpose is to reduce noise (e.g. smoothing), thus reducing the complexity
of the color information in the image, followed by a computation of a local
descriptor, a feature – a characterization of the color/spectral information
and texture.

(a) coarse (b) finer (c) detailed

Figure 5.1: Images at various resolutions and a possible segmentation us-
ing JSEG [35]. Angel image is courtesy of Centre d’Etudes Supérieurs de
Civilisation Médiévale (CESCM), UMR 6223, Poitiers, France.



5.1. IMAGE SEGMENTATION 79

Figure 5.2: Theoretical example of segmentation.

A digital image I is modelled from a mathematical point of view as a
function I(x, y) which maps the locations (x, y) in space to the pixel value
I(x, y) = v. Traditionally, images were black and white or gray and values
were discrete from 0 to 255; in this case v will be a scalar. Since the world of
images became colored, color images are used everywhere and RGB images
are very common. In both cases, v will be a vector (r, g, b). For multispectral
images v will be an n-dimensional vector (b1, b2, ..., bn).

A discrete image I is a function I : N
2 → V. Locations P belong

to the image support, i.e. a finite rectangular grid, i.e. D = [0, . . .M ] ×
[0, . . . N ] ⊆ N

2. For gray-scale images V = [0, . . . , 255] ⊆ N; for color
images we (usually) have V = [0, . . . , 255]3 ⊆ N

3. An image element X
is called a pixel which has a pixel location Λ(X) = P and a pixel value
Υ(X) = I(Λ(X)) = v ∈ V.

If we enumerate the pixels in an image as {X1, . . . , XNP
}, we use NP =

M ·N as the number of pixels in an image.

From a mathematical point of view, for an image I, the segmentation
operation formalism states that the image is decomposed into a number NR

of regions Ri, with i = 1..NR, which are disjoint non-empty sections of I,
like in Figure 5.2. Regions are connected sets of pixel locations that exhibit
some similarity in the pixel values which can be defined in various ways.

The result of segmentation is a set of regions {Ri}, i ∈ {1, . . . , NR} which
can be represented in several ways. The simple solution used frequently is
to create a so-called region label image (IR) which is a feature image where
each location contains the index of the region that this location is assigned
to, i.e. IR : N2 → {1, . . . , NR}. This label image is also called a segmentation
map.

Haralick and Shapiro state in [54] the guidelines for achieving a good
segmentation: (i) regions of an image segmentation should be uniform and
homogeneous with respect to some characteristic such as gray tone or tex-
ture; (ii) region interiors should be simple and without many small holes;
(iii) adjacent regions of a segmentation should have significantly different
values with respect to the characteristic on which they are uniform and (iv)
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boundaries of each segment should be simple, not ragged, and must be spa-
tially accurate. Partially, these guidelines are met by the formal properties
below.

The segmentation of an image I into regions Ri is called complete, if
the regions exhibit the properties listed in [44] which we formalize in the
following:

• ⋃NR
i=1Ri = D, i.e. the union of all regions should give the entire image,

or in other words, all the pixels should belong to a region at the end
of segmentation;

• Ri
⋂

Rj = ∅ ∀ i 
= j, i.e. the regions should not overlap;

• each segment Ri is a connected component or compact, i.e. the pixel
locations P ∈ Ri in a region Ri are connected; we will define different
notions of connectivity in the following paragraphs;

• ∀i, a certain criterion of uniformity γ(Ri) is satisfied, (γ(Ri) = TRUE),
i.e. pixels belonging to the same region have similar properties;

• ∀i 
= j, the uniformity criterion forRi
⋃

Rj is not satisfied (γ(Ri
⋃

Rj) =
FALSE), i.e. pixels belonging to different regions should exhibit dif-
ferent properties.

If a segmentation is complete, the result of segmentation is a partitioning
of the input image, corresponding to the choice of homogeneity criterion γ
for the segmentation. There are usually two distinguished cases: overseg-
mentation and undersegmentation. The oversegmentation means that the
number of regions is larger than the number of objects in the images, or it
is simply larger than desired. This case is usually preferred because it can
be fixed by a post-processing stage called region merging.

The authors of [127] emphasize the concept of pixel connectivity as fun-
damental within the context of image segmentation. The pixels are adja-
cent [106] and there are mainly two types of connectivity: 4-connectivity
and 8-connectivity, the latter one being mostly used. Variants like the 6-
connectivity which is used in segmentation approach proposed by [99] do
exist. The three types of pixel connectivity are illustrated in Figure 5.3.

(a) 4–conn. (b) 8–conn. (c) 6–connectivity

Figure 5.3: Pixel connectivity.
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Rectangular or squared tessellation of digital images induce the problem
of how to define a neighborhood of a pixel for a discrete set, as an approxima-
tion for the case of continuous metric space, when the neighborhood usually
represents an open ball with a certain centre and radius [38]. The choice
of the neighborhood is of extreme importance for region-growing-based seg-
mentation methods. Each version has advantages and disadvantages, when
sets of similar pixels are searched in segmentation that should result in a
connected region.

Since Haralick [54], the notion of homogeneity is inseparable from the
segmentation purpose. Aparently, content homogeneity seems to describe
a simple concept: that visual content is visually and physically into an
inseparable whole. And right behind this definition, authors simplify the
purpose as a problem concerning only the distribution of a variable. If
we assume that we could define one information feature which explain this
phenomena, we need to define the measure that could indicate if the content
is homogeneus or heterogeneus upon this feature. In a context of landscape
complexity analysis, Feagin lists several possible criteria [41], upon the fact
that the variables are distributed in a qualitatively patchy form [118] or
quantitatively defined [76] by an index such as lacunarity [98]. Very often
authors define a binary criterion for the homogeneity of a region Ri, based
on a threshold empirically determined.

This describes regions where no pixel differs from the mean of the pixel
values inside the region by more than a threshold. This measure requires
that the range V is an algebra that supports addition and a norm. Such defi-
nitions do not necessarily lead to a unique segmentation, different processing
strategies and algorithms will thus yield different regions. Classically in im-
age processing, variables are chosen from gray-level or color distribution,
more rarely from color texture.

Such approach is too simple for the actual challenge of segmentation,
with the increase of spatial and spectral resolution of images. In order
to improve segmentation, Feagin defines the homogeneity criteria from the
shape of the distribution by several parameters like the relative richness,
entropy, difference, scale-dependent variance [41]. Is interesting to note that
texture definition used by Feagin is defined as a multiscale one, for which the
homogeneity is linked to the stationarity of the distribution along the scale.
But the more interesting conclusion of this work dedicated to the notion
of homogeneity and heterogeneity is around the fact that the homogeneity
perception depends on the perceived scale and could be homogeneous for
large scales and heterogeneous for fine scales for the same feature. In [77] the
authors explored the heterogeneity definition as the complexity of a property
in space with two further questions: the structural heterogeneity that is the
complexity measured without reference and the heterogeneity as a function
of scale [71]. As it is for the definition of homogeneity or heterogeneity,
the purpose is clearly expressed as a multi-scale complexity and as a result,
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the question of the uniqueness of the analysis parameter along the scale is
asked. And by extension, as features are specialized in color distribution,
texture parameters or wavelets analysis, the true question becomes for the
next years: how to merge dynamically several features as a function of the
analysis scale.

5.2 Watershed segmentation

The watershed segmentation technique is a region-based segmentation ap-
proach, in which the image is regarded as a landscape [13] [103]. Historically
and by definition, watershed is the approach of the mathematical morphol-
ogy. Since its first appearance several improvements followed [32]. The
segmentation process is similar modelled as to the rain falling on that land-
scape which will gradually flood the basins [14]. The watersheds or dams are
determined as the lines between two different flooded basins that will merge.
When the topographical relief is flooded step by step, three situations can
be observed: (i) a new object is registered if the water reaches a new local
minimum. The corresponding pixel location is tagged with a new region
label; (ii) if a basin extends without merging to another, the new borders
have to be assigned to this basin; and (iii) if two basins are about to unite,
a dam has to be built in between.

Unsupervised approaches of watershed use local minima of the gradient
or heterogeneity image as markers and flood the relief from these sources. To
separate the different basins, dams are built when flooded zones are meeting.
In the end, when the entire relief becomes completely flooded, the resulting
set of dams constitues the watershed (see Figure 5.4 for an illustration of
the approach): a) the considered basins begin to flood, then basin V3 floods
a local minimum and basin V1 floods another local minimum; b) a dam is
built between valleys V1 and V2 and another one between V2 and V3 and
then followed by the final step of the algorithm.

(a) rain (b) damn formation

Figure 5.4: Illustration of basin flooding in the watershed approach.

The watershed approach is traditionally applied in the original image
domain, but it has a major disadvantage since it fails to capture the global
information about the color content of the image. Therefore in Chapter X
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of [131] an approach that uses the watershed to find clusters in the feature
space is proposed. An alternative, the gradient or heterogeneity informa-
tion does not produce closed contours and hence do not necessarily provide
a partition of the image into regions. As this informations could be used as
scalar information – classically the norm of the gradient vector – they are
well adapted to watershed processing. Having this point of view, the gra-
dient images can be seen as a topographical relief: the gray level of a pixel
becomes the elevation of a point, the basins and valleys of the relief corre-
spond to the dark areas, whereas the mountains and crest lines correspond
to the light areas. The watershed line may be intuitively introduced as the
set of points where a drop of water, falling there, may flow down towards
several catchment basins of the relief [31]. In Figure 5.5 the evolution of the
watershed along the scale is illustrated. Usually a merging phase follows.

(a) original (b) 5× 5

(c) 9× 9 (d) 21× 21

Figure 5.5: The evolution of the watershed segmentation along the scale.

Several watershed approaches for color images exist[107] [23] [27]. Chanus-
sot et al. extended the watershed approach to the color domain by using
the bit mixing technique for multivalued morphology [22]. In [27] the au-
thors use a perceptual color contrast defined in the HSV color space, after
a Gaussian low pass filter and a uniform color quantization to reduce the
number of colors in the image.

5.3 Active contours

Active contours, colloquially called snakes, were introduced by Kass, Witkin,
and Terzopoulos in 1988 [69] and defined as energy-minimizing splines guided
by external constraint forces and influenced by image forces that pull it to-
ward features such as lines or edges. The active contours are successfully
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used for image segmentation in various applications.

The initial contour is incrementally deformed according to several spec-
ified energies. According to the original definition, an active contour is a
spline c(s) = [x(s), y(s)], with s ∈ [0, 1], that minimizes the following energy
functional [116]:

ε(c) = εint(c) + εext(c) =

ˆ 1

0
[Eint(c(s)) + Eext(c(s))]ds (5.1)

where εint(c) represents the internal energy and εext(c) represents the
external energy. The internal energy is intrinsic to the spline and the external
energies come either from the image or specified by the user, usually as
external constraints. The internal energy εint is usually written as:

εint(c) =

ˆ 1

0

1
2 [α(s)

∣∣c′(s)∣∣2 + β(s)
∣∣c′′(s)∣∣2]ds (5.2)

where c′(s) and c′′(s) are the first and the second derivatives, weighted
by α(s) and β(s), which are usually considered to be constants in most of
the implementations.

Xu [130] identifies several issues of the original model [69]: (i) the initial-
ization of the snake has to be close to the edge and (ii) the convergence to
concave boundaries is poor. These were partially addressed in the original
article [69] by using the propagation in the scale space described in [126]
[125]. The balloon model [28] introduced supplementary external forces for
stopping the snakes in the case when the contour was not visible enough.
The drawbacks of this approach were corrected by the approach of Tina Ka-
pur [68]. Later on, the Gradient Vector Flow (GVF) was introduced by Xu,
as well as the Generalized Gradient Vector Flow (GGVF) [128][130][129], the
two methods being widely used, despite the fact that they are complex and
time consuming. Active contours have been extended to the so-called level-
set segmentation which has also been extended to color images in [67]. We
used the first-order moment of the correlation integral to define a diffusion
model for color images [64].

We present the results of a multi-resolution approach extended to the
color domain on a color textured image from the Berkely image data-base
exhibiting one central salient object (see Figure 5.6). The hypothesis that
is made is that in such images there are two types of textures, exhibiting
different complexities: one corresponding to the salient object and the other
to the background (the complexity of the latter one being usually smaller).



5.3. ACTIVE CONTOURS 85

(a) initial (b) intermediate (c) final

Figure 5.6: Example Berkely image 100080 (color).

The external energy is linked to the correlation dimension (practically
being the mean value of the C(δ) distribution) and also related to the J
factor (JSEG) given that it represents a measure of the heterogeneity in a
certain neighborhood, at a given resolution. The external energy forces that
drive the active contours are given by the average CIE Lab ΔE distance
computed locally at different resolutions, based on the original image (see
Figure 5.7). For a certain resolution, the value of one point (x, y) in the
energetic surfaces is given by the average CIE Lab ΔE distance computed
in a neighborhood of size n× n centered in that specific point. One has to

compute the average value of n2(n2−1)
2 distances:

Eext(x, y)|n×n =
2

n2(n2 − 1)

n2∑
i=1

n2∑
j=i+1

ΔE(vi, vj) (5.3)

(a) 5× 5 (b) 9× 9 (c) 15× 15

(d) 25× 25 (e) 35× 35 (f) 45× 45

Figure 5.7: Diffusion pseudo-images for Berkely image 100080 (crop).
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5.4 Feature-based textured image segmentation

Very often segmentation is performed in a feature space, not directly on the
pixel data. Such a feature space can be represented by any features from the
set of features presented in the previous two chapters of this book. Usually a
clustering technique (e.g. k-means) is used to classify the pixels of an image
as a function of their local feature. This approach is illustrated in Figure
5.8: the feature extraction is performed locally, followed by a classification
of features. The advantage of this approach is that the number of desired
regions can be specified through the number of classes.

Figure 5.8: Feature-based textured image segmentation using feature clas-
sification.

In Figure 5.9 we show the segmentation results for a color textured im-
age from the Berkely image data-base when using as local features the two
morphological features presented in Chapter 4: granulometry and the mor-
phological covariance. The classification was unsupervised (k-means). The
value of k = 2 was chosen based on the hypothesis that there are only two
regions in the image, from the point of view of texture characterization: the
object of interest and the background. The two morphological features were
computed using 10 iterations. For the granulometry we used square SE from
3× 3 to 21× 21 and for the morphological covariance the distance between
the ES was varied from 0 to 9.

(a) Original image (b) Granulometry-based (c) Morphological cov.-
based

Figure 5.9: Image segmentation using the approach depicted in Figure 5.8.

To illustrate this color textured image segmentation technique, we used
as local texture feature the vector of volumes computed between pseudo-
dilation and pseudo-erosion, for varying sizes of the SE. The two pseudo-
morphological operations are presented in Chapter 4. We present our results
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regarding the quantitative evaluation of the impact of the PPM approach in
such a segmentation framework. We compare our approach with two pseudo-
morphological approaches: the α-trimmed pseudo-morphology, computed in
RGB color space and with the lexicographical morphological approach, using
the HSV color space with (V,S,H) component priority. We performed image
segmentation based on local texture features. We used this feature due to the
fact that it reflects the texture complexity, since in the log-log space, it allows
the estimation of the FD of the given texture. However, as for real textures
the fractal hypothesis does not stand, we chose to use the entire vector,
which comprises more information than the FD by itself. We used textured
images from the Berkeley database [82], in which there is a salient object and
the background. Our first attempt is to discriminate between simple (out of
focus regions) and complex (in focus object). Thus, we computed the vectors
for local regions within the images, using sliding window, followed by a k-
means classification in two classes. We computed the segmentations using
PPM, α-trimmed and (V,S,H) lexicographical ordering. We also generated
a ground-truth segmentation, performed by a human, which is used as a
reference for a quantitative comparison among the three approaches. The
results are depicted in Fig. 5.10.

ground-truth PPM α-trimmed (V,S,H)-lex.

Figure 5.10: Segmentations based on local texture features obtained using
PPM, α-trimmed pseudo-morphology and (V,S,H) lexicographical morphol-
ogy for Berkeley 108073 (1st row), 130066 (2nd row), 134008 (3rd row),
43033 (4th row) images.



88 CHAPTER 5. APPLICATIONS

As a quantitative comparison, we computed the percentage of correctly-
classified pixels as a segmentation evaluation criterion, as in [21]. The results
are presented in Table 5.1. One may notice that in the most of the cases,
PPM leads to a better segmentation, proving the increased ability to capture
the complexity of textures and variation along scales. Segmentation could
be further improved, by considering the window size used for local feature
computation.

PPM α-trimmed (V,S,H) lex.

Berkeley108073 92.37% 91.41% 90.57%

Berkeley130066 96.06% 95.37% 95.40%

Berkeley134008 96.53% 96.86% 96.90%

Berkeley43033 96.35% 86.01% 86.19%

Table 5.1: Percentage of correctly classified pixels for images in Fig. 5.10.

5.5 Color texture classification

In order to demonstrate the usefulness of our pseudo-morphological ap-
proach for texture description and classification we chose the normalized
morphological covariance [114], recently extended to color images [8]. By
definition, the morphological covariance is the volume of an eroded image,
using a pair of points P2,�v separated by a vector �v, as SE: [K(f)][�v] = VεP2,�v

.

However, since in PPM we need a distribution of a set in order to estimate
the two pseudo-extrema, we embrace the approach proposed by [8], in which
a pair of SEs separated by a vector �v is used instead of just two points. In
addition, K is normalized according to the volume of the initial image. For
the volume computation we propose to use the volume between the initial
image and the pseudo-eroded image, in order to better capture the differ-
ences between the initial and the resulted colors, after pseudo-erosion. We
compute the normalized covariance using the following four orientations for
�v (0◦, 45◦, 90◦, 135◦) and 25 iterations on each orientation, varying the mod-
ule of �v with a step of two pixels, thus resulting a K vector of size 100. We
performed the following two experiments.

We performed the classification on the Outex13 color texture database,
which consists of 68 textures, each divided into 20 non-overlapping sub-
images of 128 × 128 pixels, thus resulting 1360 images to be classified [89].
We computed the normalized covariance for each of the 1360 sub-images,
using three pseudo-morphology approaches: PPM, α-trimmed and (V,S,H)
lexicographical morphology. We use half of the resulted vectors as training
samples and half of them as test samples, within the out-of-the-box discrim-
inant analysis available in MATLAB, obtaining approximately the same
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good classification rates for all the three used approaches (76.76% for PPM,
76.32% for α-trimmed and 76.47% for (V,S,H) lexicographical morphology).
This experiment showed that our PPM approach generates a comparable
result with the ones given by the other two approaches.

In order to focus on the extracted morphological features rather than on
the classification process itself, we embraced the protocol proposed by [9]. In
addition, taking into consideration that in the Outex13 database there are
many visually similar images which are considered as different textures (e.g.
the sandpaper or the barley-rice textures) we performed another experiment
in which we chose nine classes of color textures from the Outex database
(barleyrice, canvas, carpet, chips, fur, granite, plastic, seeds and wood), with
8 images from each class. These images were split into 20 sub-images of size
128 × 128, thus resulting 1440 samples. We computed the morphological
covariance for each of these samples and we used half of the resulted vectors
as training set and half of them as test set. Using this set of textured images
and the generalized co-occurrence matrix along with the classification pro-
tocol described in [9] we obtained a good classification rate of 88.27%, which
we further use as reference. The good classification rate obtained using PPM
is 81.38%, while the result obtained using α-trimmed pseudo-morphology is
68.5%. However, given that our morphological covariance is based only on
color differences, being invariant to the actual colors within the textures, we
added the first and the second probabilistic moments of each color channel
within the feature vector. The obtained results for good classification rates
are 92.36% for PPM and 78.47% for α-trimmed. In conclusion, the morpho-
logical covariance obtained using our PPM leads to a worse result than the
one obtained using the generalized co-occurrence matrix, but by adding the
color information, we are able to obtain a higher good classification rate. In
this particular context, our approach shows a better contribution to textural
feature extraction than the α-trimmed pseudo-morphology.

5.6 Discussion

The segmentation process requires addressing three issues: (i) the features
capturing the homogeneity of regions, (ii) the similarity measures or dis-
tance functions between features content and (iii) the segmentation frame-
work which optimizes the segmentation map as a function of the feature–
metric pair. We presented the color segmentation frameworks separately,
but very often there is only a fine frontier between them and quite often hy-
brid techniques emerge, that combine for instance pyramids and watersheds
[2] and the approach proposed by Serra [111]. However, the segmentation
approaches evolved towards unanimously-accepted frameworks. Several seg-
mentation frameworks imposed themselves as standard techniques: pyrami-
dal approaches, watershed, JSEG, graph cuts, normalized cuts, active con-
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tours, or more recently, TurboPixels. Recently, a new trend is oversegmen-
tation followed by region merging TurboPixel segmentation or SuperPixels
[74].

Nowadays the question still remains since Haralick: which is the best
value for the parameters of the homogeneity criteria? There are no recom-
mended recipes. New perspectives come from psychophysics with perceptual
theory, in particular Gestalt theory. As the homogeneity/heterogeneity def-
inition have been expressed as complexity of a feature distribution, these
perceptual theories search to explain what are the physical parameters that
are taken into account by the human visual system. An open question is
given by the relationship between the similarity law from Gestalt theory
and the homogeneity. Randall in [100] links the similarity law to grouping
into homogeneus regions of color or texture. Several works in physiology
and in human vision have explored this process with stochastic or regular
patterns, but nowadays this work is in progress for color patterns as well.
Nevertheless, the definition of homogeneity is still imperfect, often reduced
to basic moments available for particular scales of the image. The future
trends should be around these questions.
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[89] T. Ojala, T. Mäenpää, M. Pietikäinen, J. Viertola, J. Kyllönen, and S. Huovinen.
Outex - new framework for empirical evaluation of texture analysis algorithms. In
Proceedings of the 16th International Conference on Pattern Recognition - Volume
1, ICPR02, Washington, DC, USA, 2002. IEEE Computer Society.

[90] Nikhil R Pal and Sankar K Pal. A review on image segmentation techniques. Pattern
Recognition, 26(9):1277 – 1294, 1993.

[91] A. Papoulis. Probability, random variables, and stochastic processes. McGraw-Hill,
3rd edition, 1991.

[92] K. Pearson. On lines and planes of closest fit to systems of points in space. Philo-
sophical Magazine, 2(6):559–572, 1901.

[93] H.O. Peitgen and D. Saupe. The sciences of fractal images. Springer Verlag, 1988.

[94] S. Peleg, J. Naor, R. Hartley, and D. Avnir. Multiple resolution texture analysis
and classification. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, PAMI-6(4):518 –523, july 1984.

[95] Ken Perlin. An image synthesizer. SIGGRAPH Comput. Graph., 19(3):287–296,
July 1985.

[96] M. Petrou and P. G. Sevilla. Image Processing: Dealing with Texture. John Wiley
and Sons, 2006.

[97] Antonio Plaza, Pablo Martinez, Rosa Perez, and Javier Plaza. A new approach to
mixed pixel classification of hyperspectral imagery based on extended morphological
profiles. Pattern Recognition, 37(6):1097 – 1116, 2004.

[98] R.E. Plotnick, R.H. Gardner, and R.V. O’Neill. Lacunarity indices as measures of
landscape texture. Lanscape Ecology, 8(3):201–211, 1993.

[99] Lutz Priese and Volker Rehrmann. On hierarchical color segmentation and applica-
tions. In Proceedings, pages 633–634. Proceedings of the Conference on Computer
Vision and Pattern Recognition, 1993.

[100] J. Randall, L. Guan, W. Li, and X.Zhang. The hcm for perceptual image segmen-
tation. Neurocomputing, 71(10-12):1966–1979, June 2008.
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