

Computer Network Emulation for

Quality of Experience Assessment

Mihai Ivanovici

Transilvania University of Braşov, România

Editura Universităţii Transilvania din Braşov

2015

EDITURA UNIVERSIT II TRANSILVANIA DIN BRA OV

 Adresa: 500091 Bra ov,
 B-dul Iuliu Maniu 41A
 Tel: 0268 476 050

Fax: 0268 476 051
 E-mail : editura@unitbv.ro

Copyright Autorul, 2015

Editur acreditat de CNCSIS
Adresa nr.1615 din 29 mai 2002

Referen i tiin ifici:

 Prof. univ. dr. ing. Gheorghe TOAC E

 Prof. univ. dr. ing. Mihai CIUC

Ilustra ie copert : Alexandra Liana St nescu

Design copert : Vlad Andrei Nica

Descrierea CIP a Bibliotecii Na ionale a României
Ivanovici, Mihai

Computer network emulation for quality of experience
assessment / Mihai Ivanovici. - Bra ov : Editura Universit ii
"Transilvania", 2015

 Bibliogr.
 ISBN 978-606-19-0586-7

004

Contents

Table of contents i

Foreword ii

1 Introduction 1

1.1 Quality of Experience . 3

1.2 Assessing QoE . 3

1.3 Computer network emulation 5

1.4 A taxonomy of computer networks 10

2 Existing Computer Network Emulators 13

2.1 Commercial Network Emulators 13

2.2 Freely-available Network Emulators 16

2.3 Discussion . 21

3 Emulation. Principles and Techniques 23

3.1 Principles of network emulation 23

3.2 Background traffic technique 27

3.2.1 Passive background traffic 27

3.2.2 Active background traffic 29

3.2.3 Multiple background traffic sources 30

3.3 Server with vacations technique 31

3.4 Approach equivalence . 32

3.5 Emulating multiple hops . 33

4 Emulation. The Models 35

4.1 Queueing theory . 35

4.1.1 M/M/1 . 36

4.1.2 M/M/1/K . 36

4.2 A temporal model . 37

4.2.1 An infinite queue . 39

i

ii CONTENTS

4.2.2 A finite queue . 41

4.3 Model comparison . 42

4.4 Server with vacations . 43

4.4.1 Emulating the delay 43

4.4.2 Emulating the loss . 45

4.5 Ideal behaviour of scheduling mechanisms 46

4.5.1 Strict Priority . 46

4.5.2 Weighted Round Robin 50

4.6 A Quality Degradation Algebra 50

5 An FPGA-based Emulator 55

5.1 Hardware vs. software implementation 55

5.2 The hardware platform . 56

5.3 Implementation philosophy 57

5.4 Network emulator architecture 59

5.5 Module Description . 61

5.6 Implementation details . 64

5.7 Implementation validation . 67

5.7.1 Scheduling algorithm performance assessment 70

6 Application QoE assessment 73

6.1 Web browsing . 73

6.2 VoIP . 75

6.3 MPEG-4 video streaming . 81

Bibliography 92

Foreword

This book is mainly based on the PhD thesis entitled Network Quality Degra-

dation Emulation—An FPGA-based Approach to Application Performance

Assessment publicly defended in on January 26th, 2006 at Politehnica Uni-

versity of Bucharest, Romania. During the research that took place place at

CERN, the European Organization for Nuclear Research, Geneva, Switzer-

land, rougly between 2002 and the end of 2005, we proposed the term of

user-perceived quality in our research publications and tried to impose it

at international level, but finally the term Quality of Experience was con-

sacrated. The last two chapters of this book are based on the research

carried out at Transilvania University of Braşov, Romania, between 2006

and 2010.

The publication of this book in 2015 celebrates an important achievment

for the Department of Electronics and Computers within the Transilvania

University of Braşov, România: due to our implication to the ATLAS exper-

iment at CERN, Geneva, Switzerland, our contribution was acknowledged

by placing our university on the list of collaborating institutes. This of-

ficial position places the research in the field of FPGA and ASIC design,

as well as PCB design, performed in the forementioned department, on the

international map of electronics for particle physics.

The outline of this book is the following: the existing network emulators

are presented in Chapter 2. Their architecture is briefly described, along

with their features. The approaches are analyzed and their disadvantages

are emphasized. Chapter 3 states a set of principles that are the basic

guidelines we propose for the emulation of realistic network conditions. The

two main approaches that can be taken for the emulation of the degradation

that occurs in computer networks are presented. Chapter 4 proposes the

mathematical models and tools to be used to achieve the goals presented in

the previous chapters. Their consistence with classical queueing theory is

demonstrated. Then the hardware platform we used for development of our

network emulator and the emulator architecture are described in Chapter

iii

iv CONTENTS

5. Experimental results are shown in Chapter 6. Three applications are

discussed: web browsing, voice over IP and video streaming. The reader

is invited to prior or further read the book by Răzvan Beuran, entitled

Introduction to Network Emulation, Pan Stanford Publishing, 2013.

I would like to express my gratitude to my mentor, prof. Vasile Buzuloiu,

supervisor of my PhD thesis, for guiding me on my scientific path. My spe-

cial thanks go to Bob Dobinson and Brian Martin who acquainted me in

their ATLAS Networking group at CERN and conducted my research. I

wish to thank Neil Davies from Predictable Network Solutions, UK, for his

continuous support and involvement in the work carried out at CERN. I

would like to thank Răzvan Beuran, not only for sharing the same office,

but for both the scientific and philosophical discussions we had during our

stay at CERN, as well for his contributions to the development of the net-

work emulator. Special thanks to Matei Ciobotaru, who implemented the

low-level library providing the primitives for the memory and PCI access.

Many thanks to all those who read the original PhD thesis: their pertinent

comments and suggestions helped me refine it. Last but not least, many

thanks to Ştefan Savu for his contribution on VoIP QoE assessment.

Mihai Ivanovici, Braşov, România, 2015

Chapter 1

Introduction

The Internet grows and becomes more complex every day. The complex-

ity of the Internet is not only determined by its dimensions, but also by

its heterogeneity. Like other complex systems1, networks exhibit a highly

unpredictable behaviour. They are non-linear systems, therefore the overall

behaviour is not just the simple sum of the individual network components,

as one may expect. Complex non-linear systems are difficult to predict since

they exhibit qualitatively different behaviours at different times.

The Internet is best effort. One may think that best effort refers to a irre-

proachable operation, but in fact it says that nothing is guaranteed and the

Internet does its best to ensure the connectivity and deliver the application

traffic between two end points. Networks are degrading environments. They

perturb application behavior by delaying and sometimes even dropping the

application traffic. In an ideal network, applications should only experi-

ence a minimum quality degradation, caused by the propagation delay. In

real-world networks things get worse, as application traffic experiences, in

addition to the fixed propagation delay, a variable delay due to queueing and

the presence of other traffic, and, potentially, loss. The delay and loss are

the consequences of the competition between traffic flows for the available

network resources. We denote the increased loss and delay experienced by

an application by the term quality degradation. The quality degradation in

the network is reflected in the performance degradation at application level.

As network applications become more and more demanding, the need to

be able to quantify and predict the behaviour of computer networks comes to

light. Mission or life-critical applications simply cannot rely on the current

1Many natural phenomena may be called ”Complex systems”, and ”Complexity sci-

ence” is highly interdisciplinary. Examples of complex systems include ant hills, ants

themselves, human economies, nervous systems, cells and so forth.

1

2 CHAPTER 1. INTRODUCTION

Internet. First of all, one must understand application requirements and

quantify them in a precise manner [39]. In case the requirements are not

met, the deviation from the ideal behaviour should be assessed and the

implications analyzed. The next step would be to reconfigure or redesign

the network in such a way that it will ensure the desired quality level for the

applications. The alternative choice would be to redesign the application in

order to make it more robust or more efficient. These two approaches can

be combined in order to meet the application requirements.

To refine network applications or protocols, and make them more ap-

propriate for the real-life deployment, one can use an iterative approach:

design, implementation, validation. Starting from the initial design or spec-

ifications, the application is implemented. The next step is to validate the

implementation in a real network scenario or in a laboratory experimen-

tal setup. Based on the observed application behaviour, the design stage

can be revisited. Using this methodology, applications would be guaranteed

to work in a certain range of network conditions. However, network con-

ditions can be very aggressive and even the most robust applications may

fail. Guaranteeing bounds on the quality degradation in networks could be

a solution to the unpredictable behaviour of networks.

Understanding how application performance depends on network qual-

ity degradation is a preliminary step in understanding the behaviour of

networks, as well as the behaviour of the network applications. Knowing

the relationship between the user-perceived quality—as a measure of appli-

cation performance—and the quality at network level makes it possible to:

(i) predict how an application would behave in given network conditions;

and (ii) design the networks in such ways that the applications will perform

according to user requirements or expectations.

From the user perspective, quality of experience (QoE) or quality degra-

dation is perceived as an unsatisfactory application behaviour, with respect

to expectations. Depending on application, quality degradation may mean

an increased time-to-load for a Web page, an increased time-to-complete for

a file transfer, or a poor quality of the speech signal for a Voice-over-IP call.

From the network perspective, any excessive quality degradation2 indicates

insufficient resources, or ineffective management of the available ones. Quan-

tifying user needs—translated into application minimum expectations—and

determining the circumstances under which applications fail are important

steps in understanding the application behaviour.

2As mentioned before, one should expect at least a minimum quality degradation, due

to the propagation delay.

1.1. QUALITY OF EXPERIENCE 3

1.1 Quality of Experience

The applications drive the development of networks. The need for trans-

ferring huge amounts of data across long-haul connections, or the need for

wireless ad-hoc connections, as well as the ordinary e-mail or browsing re-

quire continuous refining of networking technologies. New standards and

protocols allow for more reliable and faster data handling. However, the

user is the only one who can say if data is transferred fast enough or the

application behaves the way it should.

In what follows we shall illustrate how user expectations become require-

ments for a certain application. Let us consider the case of a very simple

electrical circuit comprising a light bulb, a power source and a switch. When

switching on the circuit, the light bulb will illuminate. Everyone expects this

to happen in a blink of an eye. It takes longer for a neon light to turn on,

and definitely much longer to switch on the public lights or the illumination

system of a football stadium. The person that presses the switch surely

expects the light to go on. No matter what the user expects, there will be

a delay between the moment the main switch is pressed and the moment

when the lights will be on.

Usually everyone’s desire is that the light go on instantaneously. This

is still an expectation. A requirement is an expectation which is expressed

within a time constraint: if light goes on, I want it to happen in less than

1 second. When browsing the Internet, the user expects a certain web page

to be loaded in a browser, unless the page is unavailable. It’s desirable that

this happens in a couple of seconds. If it takes longer than 10 seconds, the

page may no longer be of interest. In this case, the requirement is for the

page to load in less than 10 seconds.

1.2 Assessing QoE

There are three steps to take in order to assess application performance: (i)

observe the application behavior at the end-node level, (ii) accurately mea-

sure the quality degradation experienced by the application traffic and (iii)

correlate the above. Scientific method requires the use of objective metrics

to perform both the network and application level performance assessments.

First of all, one must observe the application outcome. A human observer

could judge if the application behaved as expected, or objective metrics can

be used [72], [37]. At application level the user is unaware of what is hap-

pening at network level. Moreover he should not care about the underlying

mechanisms. However, the performance of the application and implicitly

4 CHAPTER 1. INTRODUCTION

the quality of experience strongly depends on network performance. There-

fore is mandatory to observe the network conditions or the network quality

degradation between the two end points (see Figure 1.1).

NETWORK

Figure 1.1: Observing both application QoE and network QoS.

Observing is not enough. Accurate quantification of both the application

performance (QoE) and the network conditions (QoS) should be performed.

The following step is to correlate the two results, thus experimentally deter-

mining the relationship between the application performance and the quality

degradation at network level.

This second step implies defining the application outcome as well as a

metric to allow quantify the application performance. The metric can be

either objective or subjective. Then the appropriate method to measure the

application outcome should be chosen. Once the method and the outcomes

are well defined, the application outcome must be accurately quantified.

In case of network quality degradation there are various widely used met-

rics [45], [46]: one-way delay [47], one-way packet loss [48] and throughput.

However, when application performance must be determined, each applica-

tion class requires the definition of specific metrics that take into account the

application nature. For example, for Voice over IP (VoIP) one can use the

Perceptual Evaluation of Speech Quality score [72]. In case of file transfer,

useful metrics are transfer time performance and goodput [37].

There are two traditional methods for testing and validating network

applications and protocols: (i) simulation, i.e., run a model or a represen-

tation of the application’s code in a completely synthetic environment; and

(ii) real network testing, i.e., run the application in a real environment.

Simulation has several advantages: usually it is cheap (from the point

of view of the resources involved), and it works for large-scale tests if suffi-

cient computing resources are available. Simulation has the great advantage

of being controllable, thus experiments are reproducible. One problem re-

lated to simulation is the need to rewrite the code in order to match to

1.3. COMPUTER NETWORK EMULATION 5

the simulation environment, therefore the simulation implementation of the

applications may differ from the real one. However, a simulation is only an

approximation of the real life, because both applications and networks are

mathematically modeled.

In real environments, both applications and network are real, therefore

any discrepancy between the application or network behaviour and its model

is eliminated. So the most important advantage of real network testing is

the fact that the real application is running in a real environment. The

major disadvantage is the cost: it is very expensive to create a real test

environment, even on a small scale. The tests in a real environment may not

to be reproducible, therefore possible observed problems are more difficult

to solve. Also the range of network conditions in which applications can be

studied is limited. The limitation comes from the impossibility of controlling

the other traffic flows that share the same network as the traffic of the

application of interest.

Computer network emulation is a hybrid technique between simulation

and real network testing, that allows the study of real network applications

in a laboratory setup. The application behaviour can be studied in a wide

range of network conditions.

1.3 Computer network emulation

An emulator can be seen as a black box, which behaves as one particular net-

work for the external observer. The goal is to observe the same application

QoE both when using the computer network emulator and the real network.

The black box becomes a network in a box, as illustrated in Figure 1.2

Under Study
Application

Under Study
Application

DegradationQuality
Predictable

‘‘NETWORK IN A BOX"

����
�
�
�
� ����

��
��
��
��

Figure 1.2: Network in a box.

We embraced the computer network emulation technique as the most ap-

propriate one for application performance assessment. It allowed us to study

the application behaviour in a wide range of network conditions, using a rel-

atively cheap laboratory setup consisting mainly of off-the-shelf components

[39]. Assessing the application performance requires a well-defined method-

6 CHAPTER 1. INTRODUCTION

ology [39]. The system we proposed is depicted in Figure 1.3 in a typical

test setup.

Figure 1.3: The setup for application QoE assessment.

This monitoring system allows the passive, non-intrusive measurement

of the network quality and the user-perceived quality (UPQ) or quality of

experience (QoE) for a certain application. The novelty of our monitoring

system is that we are able to both accurately measure the network quality

degradation and objectively assess application UPQ/QoE in parallel. This

allowed us to quantify the relationship between the two for a certain network

application and identify application’s requirements.

Using Fast Ethernet taps we mirror the traffic on the link between two

PCs that run the network application under study. This traffic is fed into

programmable Alteon UTP network interface cards, which are hosted by

two PCs (see the detailed setup depicted in Figure 1.4). From each packet

all the information required for the computation of the network QoS pa-

rameters is extracted and stored in the local memory as packet descriptors.

The host PCs, which control the programmable NICs, periodically collect

this information and store it in descriptor files. This data is then used to

compute off-line the following network parameters: one-way delay and jitter,

packet loss and throughput. Based on the same descriptors, we can calculate

instantaneous or average values, and various histograms. See [39] for details

on the implementation and the capabilities of the monitoring system.

The monitoring system we designed made use of a software network

emulator. From the plethora of existing network emulators we chose NIST

Net [15]. It allowed us to implement the most cost effective system. However,

given the limitations of the existing network emulators (see Chapter 2) we

decided to implement our own network emulator.

1.3. COMPUTER NETWORK EMULATION 7

QoS / UPQ measurement system

QoS Meter

UPQ Meter

Network
Emulator

TAP #1 TAP #2

File #1 File #2

Host PC #1 Host PC #2

DescriptorDescriptor

Data Flow

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

Figure 1.4: The detailed setup used to assess application QoE.

For a VoIP application we established the experimental relationship be-

tween the user-perceived quality (UPQ) and the networks degradation (see

Figure 1.5). The PESQ score (Perceptual Evaluation of Speech Quality) [72]

is an objective metric, proposed by International Telecommunication Union

(ITU) to quantify the user satisfaction in the case of a telephone call.

According to [55] the relationship between PESQ scores and audio qual-

ity is the following: PESQ scores between 3 and 4.5 mean acceptable per-

ceived quality, with 3.8 being the PSTN3 threshold this will be termed as

good quality; values between 2 and 3 indicate that effort is required for un-

derstanding the meaning of the voice signal this will be named low quality;

scores less than 2 signify that the degradation rendered the communication

impossible, therefore the quality is unacceptable.

One can establish that for loss rates up to 4% the influence is noticeable,

but quality remains good for low jitter values; quality becomes low for higher

loss rates, up to 15%. If jitter is high then loss doesn’t change significantly

the perceived quality which moreover is unacceptable. This is due to the

high level of induced dejittering loss [38].

In order to have a better insight in the location of the limits of good-to-

low and low-to- unacceptable quality, horizontal cross-sections of the surface

in Figure 1.5 at the PESQ score levels corresponding to these limits (PESQ

3Public Switched Telephone Network.

8 CHAPTER 1. INTRODUCTION

0

5

10

15

0
20

40
60

80

1.5

2

2.5

3

3.5

Average loss rate

Average jitter [ms]

P
E

S
Q

 s
co

re

0 10 20 30 40 50 60 70
0

5

10

15

Average jitter [ms]

A
ve

ra
ge

 lo
ss

 ra
te

 [%
]

2

2

2

2

2
2

2

3
3

3.8

Figure 1.5: UPQ/QoE vs. network quality degradation for a VoIP call using

the G.711 codec (surface and contour plot).

score values equal to 3 and 2) were made. For the G.711 codec [56] one can

also see the boundary of excellent-to-good quality, at a PESQ score equal to

3.8. This is the only codec we studied for which quality can be also excellent:

the corresponding area lies roughly within 0 to 1% loss rate and 0 to 20 ms

jitter.

Once that the dependency of the user-perceived quality on network qual-

ity degradation is determined, two main tasks can be performed: (i) predict

how the application will perform in given network conditions; and (ii) de-

sign or configure the network so that the applications will run at a specific

performance level or will deliver the required user-perceived quality or QoE.

To emulate means “to reproduce the action of or behave like (a different

type of computer)” [49]. When emulating networks, the emulation refers to

the ability of reproducing the effects induced by a live network, as they are

perceived by the application traffic. Our goal is to emulate the end-to-end

quality degradation likely to appear in large networks, so that same loss

in quality has the same effects on application behaviour. The effects on

application behaviour are to be judged based on the observable outcomes

defined for that particular application.

There are several levels of fidelity to which a network can be emulated.

At the most concrete level, emulating a network element means first of all

emulating its internal architecture. Basically this comes to emulating a se-

ries of queues and the switching fabric that interconnects them. Emulating

network elements by reconstructing exact replicas can be very complex. As

the system to be emulated increases, the growth of its complexity may re-

quire huge processing power and the time to simulate or emulate the system

skyrockets. Therefore an equivalent model should be built, as an abstraction

1.3. COMPUTER NETWORK EMULATION 9

of the entire system.

To emulate a complete end-to-end path, one could emulate the complex-

ity of each of the individual components along that path. However, in this

approach, there would be no hope of generalization and hence the extraction

of principles on how applications and networks interact. We aim to emulate

this interaction, and also the interaction between different traffic flows. The

consequence of these interactions is the degradation in the network quality

as it is experienced by the traffic flows. There are two possible scenarios:

1. the case when the traffic of interest (that we also call foreground traffic)

is the only traffic flowing through the network. In this the interaction

between the traffic of interest and the network is emulated,

2. the more realistic case is when other traffic flows – denoted by back-

ground traffic – share the same resources. The competition between

different streams for the limited network resources leads to saturation,

the prime cause of degradation in quality.

Network quality degradation can be characterized by two parameters:

the loss and the delay. Intrinsically they are random variables, characterized

by their probability density functions. They can be seen as two degrees of

freedom, still highly correlated. We use these two coordinates to assess the

degree of realism of our models. For a delay-insensitive application, different

delay distributions can have the same effect on the application outcome,

whereas the loss distributions can have completely different effects, given

the specific packet loss pattern. E.g., for TCP/IP, it makes a significant

difference which packets get lost (data or control packets) to the time-to-

complete a data transfer. Also the loss in bursts (several packets are lost in

a row) has a more dramatic impact to the TCP/IP rate, than if only one

packet is lost, if the simplest acknowledgment method is deployed [57].

This books describes the approach we took for the emulation of the qual-

ity degradation likely to occur in computer networks. The framework we

propose makes it possible to create an emulation tool, which permits the

emulation of realistic network conditions. Mathematical models and com-

puter simulation, as well as measurements in a testing environment are used

to validate the real implementation on a hardware platform. The hardware

platform we used is presented in Chapter 5.

The approach comprises three levels. At the theoretical level, mathe-

matical models of the objects to be emulated are created. Their intrinsic

properties are analyzed and their bounds are estimated. At the simulation

level, the objects is simulated and their behaviour is observed. The outcome

10 CHAPTER 1. INTRODUCTION

is quantified and compared against the mathematical model.The first two

levels allow us to extract the ideal behaviour that will be used as reference

for the validation of the implementation. Then, a calibration of the real

implementation follows. Given the constraints usually imposed by real im-

plementations, the degradation introduced may differ from the expectation.

A possible cause can be the fixed-point representation and the fact that time

values are represented in quanta. Also the time spent to make decisions re-

garding the packet handling should be taken into account, as part as the

intended delay.

There can be several possible levels of equivalence, depending on the

degree of approximation. Identity can be the strongest level of equivalence,

if the output of the theoretical model and the one of the real implementation

match exactly. The two outputs could also match in terms of averages over

arbitrarily-long intervals of time, or in terms of probability density functions.

A measure that characterizes the difference between the two probability

functions could be used to indicate the level of equivalence.

1.4 A taxonomy of computer networks

In this section we propose a taxonomy of networks and relate this to the

ΔQ concept. Given that a network can be any system that interconnects

two end-points, from a simple wire to the whole Internet, we can classify the

networks into the following categories (refer also to Figure 1.6). Because of

the quality degradation it introduces, any network is a quality degradation

object. Each category of networks is characterized by the loss and delay

they introduce.

Order 0 networks. At the most abstract level, the class of order 0 net-

works corresponds to an empty set of network elements or devices. The two

end points are communicating through a wire. The wire can correspond to a

UTP cable or an optical fiber. To emulate order 0 networks simply means to

emulate the fixed delay caused by propagation through the communication

channel and the loss caused by the bit error rate (BER) characteristic of the

transmission medium.

Order 1 networks. This corresponds to a set comprising only one net-

work element, that has only a queue or a FIFO. This implies emulating the

variable delay caused by queueing and the loss caused by resource exhaus-

tion. The intra-stream contention is therefore modeled, as the packets in a

flow compete for the same resources.

1.4. A TAXONOMY OF COMPUTER NETWORKS 11

Order 2 networks. In this case, the set is formed out of a network ele-

ment comprising multiple queues. The switches and the routers are order 2

networks. These queues are serviced according to a scheduling mechanism,

and may imply the use of traffic differentiation. One must emulate the

inter-stream contention and the effects of different scheduling mechanisms.

Order 3 networks. This set includes multiple network elements of or-

der 0, 1 and 2, and correspond to LANs, MANs or WANs. The quality

degradation they induce correspond to the accumulation of multiple hop

effects.

S

(a) order 1

M
U
X

Queue 1

Queue 2

Queue 3

S

(b) order 2

IN

OUT

(c) order 3

Figure 1.6: The proposed taxonomy illustrated.

The “ΔQ” concept. Networks can be viewed as the sum of basic degra-

dation elements. Every element induces delay and, potentially, loss. They

degrade the experienced quality of the traffic flowing through them, i.e.

they are quality degraders. Each basic element contributes with a certain

amount—denoted by ΔQ—to the total amount of degradation along a net-

work path. For every switch and router along that particular path, math-

ematical models can be built. Those models are thereafter aggregated in

network models of the end-to-end quality degradation (see such an exam-

ple in Figure 1.7). The aggregation process may be more complex than

the simple addition of the per-hop effects. Depending on the complexity of

switch and router models, the emulation of QoS mechanisms, like scheduling

algorithms and traffic shaping techniques, can be performed as well.

The initial step in our approach is to first create emulations of simple

building blocks, such as wires and queues, reproducing the quality degra-

dation they introduce. In this view, a complex network is the composite of

such basic components. Based on these simple models, one can synthesize

an approximation of the behaviour of a complex network into one aggregate

single model.

12 CHAPTER 1. INTRODUCTION

end−to−end

ΔQ

Δ ΔQ

ΔQ

ΔQ ΔQ

ΔQ

Q

1

2 3

4

5 6

7

QΔ

10

Figure 1.7: The end-to-end ΔQ.

The main goal of our approach was to create a tool that is able to emu-

late several network objects, like queues and wires, switches and wide-area

networks. The wires allow the emulation of the fixed delay introduced by the

propagation through transmission media. The emulator makes it possible to

study, for example, how applications perform over large-delay connections,

the consequences of using long optical fibers. The queues allow to study

the simplest contention management mechanisms, like tail drop. No traf-

fic differentiation applies, therefore all traffic flows get the same treatment.

The scheduling mechanisms implemented in switches and routers, like Strict

Priority or Weighted Round Robin, enforce differential treatment. Appli-

cation traffic experiences different quality degradation based on its priority

and the other traffic flows in the system. The wide-area networks are a

collection of queues and wires, switches and routers. The quality degra-

dation they introduce is the result of local quality degradations in each of

these elements. Finding a single compact model of such a network, based

on the aggregation of simple models, would be the ultimate goal of any em-

ulation tool. Using this tool, we are able to assess application performance

by experimentally establishing the relationship between the user-perceived

quality and the experienced network quality degradation.

Chapter 2

Existing Computer Network

Emulators

In this chapter the existing network emulators will be presented. Their

features will be described and discussed. For some of them, the architecture

is presented, and the concepts behind it, together with with their main

advantages and disadvantages.

There exist several network emulators, in both hardware and software

implementations. The hardware network emulators are usually available

as commercial products, while the software network emulators are freely

available. The hardware network emulators can be more precise, in the

sense that the degradation they introduce (e.g., delay) is more accurate

than in a case of a software implementation. Software network emulators

can be installed and run on ordinary personal computers, which makes them

very attractive for building cheap experimental setups.

Most of the existing network emulators are network architecture oriented,

i.e. they emulate a specific network by deploying a complete architectural

representation of it. The main disadvantage that emerges from this is the

fact that as the complexity of the emulated network increases, its description

or representation becomes larger and more difficult to deal with. There is

no ability to abstract and to use a more compact and simple model of the

network to be emulated.

2.1 Commercial Network Emulators

The description of the following commercial network emulators is solely

based on the information available on Internet, which is mainly market

oriented. Therefore their description may lack details on the internal archi-

13

14 CHAPTER 2. EXISTING COMPUTER NETWORK EMULATORS

tecture, the emulation concepts that are implemented or the mathematical

models that are used.

Anuē network emulators are used to validate optical network operation

during pre-deployment testing. It can precisely emulate signal delays and

impairments that occur during Gigabit-rate transmission over optical fiber

of other long-haul media. It supports several protocols, at data rates up to

10.7 Gbps. The Anuē network emulator is a programmable spool of fiber [9].

The following product versions are available: Sonet/SDH, Sonet/SDH

Path Layer, Gigabit Ethernet, 10 Gigabit Ethernet, Fibre Channel and

Combo Units, based on the type of the interfaces they are equipped with and

the protocol they support. A functional Anuē system consists of a hardware

platform and one or more software loads. All Anuē software loads include

a Graphical User Interface (GUI) and TCL script interface, which allow for

easy automation of common tasks.

The Hammer PacketSphere network emulator from Empirix [10] has a

network processor architecture. It can introduce latency, jitter, packet loss,

bandwidth limitations, bit errors, duplicate packets and packet reordering,

at line speed on Fast Ethernet and Gigabit interfaces. Over 1.4 million

packets per second (pps) can be processed per direction.

The latency and jitter can be constant or with uniform, normal, or ran-

dom distribution. Packet loss be expressed in percentages, 1 packet out of

N, or in size of a burst. Packet duplication and packet reordering can be

also specified in percentages. Higher-level effects like congested router or

packet re-route can be emulated. The two parameters to configure are the

re-route rate and the re-route duration.

PacketStorm 4XG IP network emulator reproduces the unfavorable con-

ditions of IP network in a controllable and repeatable laboratory setup.

PacketStorm 4XG1 can accommodate 16 Gigabit Ethernet ports and two 10

Gigabit Ethernet ports, its sustained packet rate being of over 64 million

packets per second.

Its user interface allows to create the IP network to be emulated, by

specifying the impairments for every link. The user can use Differentiated

Serviced by specifying the priority of each application traffic.

1http://www.packetstorm.com/

2.1. COMMERCIAL NETWORK EMULATORS 15

Shunra Virtual Enterprise. Shunra2 takes an empirical–rather than a

purely mathematical–approach to network emulation. They believe that

purely mathematical modeling is prone to error, because it assumes that

the behaviour of networks can be accurately predicted. This assumption

cannot stand, since in the real world, the networks and the applications often

behave in unexpected ways. Network devices may not be ideally configured

and software code may have bugs. The models may also require constant

updating in order to fit the ever-changing network conditions.

Shunra’s empirical modeling makes use of recorded conditions in the net-

work to be emulated. The captured data is then used to define the param-

eters of the emulation, like latency, error rates and bandwidth utilization.

The Virtual Enterprise [19] from Shunra is based on StormAppliance

and Cloud WAN emulation technology. It creates an exact replica of the

network to be emulated, including end users and live application traffic.

Figure 2.1 shows the architecture of the Shunra Virtual Enterprise.

Protocols

End−User
Load Tools

Catcher

Traffic
Generator

V
irt

ua
l L

oc
at

io
ns

V
irt

ua
l N

et
w

or
ks

Virtual Users

Virtual
Enterprise
Appliance

Repository

Virtual Network

Console
Reports
and
Analysis

Enterprise Network

Applications

Data Center

Network Traffic

Remote users

�
�
�
�

��

Figure 2.1: The Shunra Virtual Enterprise architecture.

At the heart of Shunra Virtual Enterprise is the Virtual Enterprise

Appliance, functioning as a bridge or a router, that alters the speed at which

traffic passes through and subjects packets to impairments likely to occur in

wide-area networks. It can emulate symmetric and asymmetric links, and

it can introduce latency, jitter and packet loss, as well as packet effects,

such as duplication and fragmentation. The Virtual Enterprise Appliance

can recreate complex network configurations, including different prioritizing

schemes.

The “Console” controls the entire Shunra Virtual Enterprise through its

XML/HTTP interface. This GUI, based on Microsoft Visio, allows you to

2http://www.shunra.com/

16 CHAPTER 2. EXISTING COMPUTER NETWORK EMULATORS

define the network to be emulated, by dragging and dropping components

as clouds, endpoints, gateways and end-users. The “Catcher” records the

network conditions, like latency and packet loss, for the network that is

being monitored. The “End User Load Tool” and “Traffic Generators” act

as application traffic generators, in order to produce the background traffic.

Simena . The network emulators produced by Simena [8] are available

in three versions: NE2000, NE1000 and NE500, depending on the features

implemented. The Simena network emulators work at Ethernet level, the

packets being forwarded between the two network interfaces as soon as the

unit is powered on. This makes them easy to use in “Plug & Play” ad-hoc

setups.

The Simena network emulators offers packet filtering capabilities, in or-

der to emulate different network impairments for different traffic flows. It

can simultaneously perform up to 32 emulation tasks. The emulation can be

either bi-directional or unidirectional. The quality degradation introduced

can be: fixed, uniform distributed or normal distributed latency, fixed, dy-

namic or burst packet loss, bandwidth throttling, fixed or dynamic duplicate

packets, random out-of-order packets. It can also emulate different network

conditions like congestion, carrier loss or fragmentation.

Simena network emulators have a Web-based GUI, which allows users

to remotely configure them from anywhere in the network. The real-time

packet analysis permits decoding any packet flowing through.

2.2 Freely-available Network Emulators

The freely-available network emulators are implemented in software. They

can be installed on ordinary PCs, which makes them a very attractive solu-

tion for building low-cost laboratory setups. They are usually designed to

run on Unix-like operating systems, such as Linux or Free-BSD.

Another advantage of the software network emulators is the possibility of

connecting them to a variety of end points, by simply using the appropriate

network interface cards. This makes them able to be interconnected with

a multitude of technologies, like copper or optical fiber Ethernet (Fast or

Gigabit Ethernet), 622 Mbps OC-12 etc.

Delayline is an application-level emulation tool [1], implemented in C

on a UNIX platform. It offers the possibility of describing the network

to be emulated, by specifying a “map” (the network architecture) and the

parameters for the links between the nodes of the network. This makes

2.2. FREELY-AVAILABLE NETWORK EMULATORS 17

Delayline an network-architecture-oriented emulation tool. The parameters

that can be specified for each link are loss and delay.

Delayline intercepts application system calls, and replace them with its

own system-like calls. Figure 2.2 shows how Delayline is integrated into an

application, as an intermediate level between the user application and the

operating system:

Delayline

Library Routines Used

Application Program Code

System Call Entry Routines

UNIX Kernel

Figure 2.2: Integration of Delayline into an application program.

In order to use Delayline, one must recompile the network application

which is under study, using a certain number of header files, and link it to the

Delayline library provided. This is a major inconvenience, since usually the

applications are only available in a binary format, therefore the user cannot

recompile their source code. Because Delayline is designed to operate only

with applications that use Berkeley sockets to communicate, the number of

applications that can be studied using this emulator is therefore restricted.

In order to introduce quality degradation, one can specify the distri-

bution (the probability density function) of the delay and the random loss

percentage. However, these two parameters are independent random vari-

ables, so the quality degradation the application would experience is far

from realistic. The precision of this tool is not satisfactory, given that the

delay overhead that Delayline introduces for each intercepted message is

of 500 μs [1].

Dummynet is a software-based emulation tool, that can be integrated into

an existing protocol stack, allowing experiment to be run on a standalone

18 CHAPTER 2. EXISTING COMPUTER NETWORK EMULATORS

system. It is implemented on a FreeBSD operating system. Dummynet inter-

cepts the communications of the protocol layer under test and can emulate

the effects of finite queues, bandwidth limitations and communication delays

[2].

Dummynet inserts a simple network model in an operational protocol

stack, between the application and the network layer. Since dummynet in-

troduces almost no overhead, tests can be run with rates up to the maximum

operating speed allowed by the system in use [2].

Dummynet

Application

Network

Figure 2.3: The principle of operation of dummynet.

The quality degradation that dummynet is able to introduce consists of

random loss, fixed delay, bandwidth limitation and packet reordering.

ENDE 3 is a software-based emulation tool, that allows protocol testing on

a single machine [3]. It can emulate end-to-end delays between two hosts by

observing the status of a particular connection using ICMP packets. The

basic architecture is presented in Figure 2.4.

ENDE consists of two single server queues with finite buffers, one queue

for each direction. Application traffic flowing between the client and the

server (see Figure 2.4) experiences loss and delay.

The delay introduced has two components: a fixed component due to

propagation and a variable component due to queueing. The variable com-

ponent is determined by the other traffic flows in the Internet. ENDE esti-

mates the characteristics of the background traffic through ICMP probes.

ENDE intercepts the TCP and UDP packets sent to a specific port number

and delays them with the value measured on the connection between the

local and the remote host (see Figure 2.5). In parallel with the emulation,

3An End-to-end Network Delay Emulator

2.2. FREELY-AVAILABLE NETWORK EMULATORS 19

Client
Server

Forward path

Reverse path

Internet traffic

Figure 2.4: The internal architecture of ENDE.

Client ENDE Server

Local host

Remote host

INTERNET

Figure 2.5: A typical setup for ENDE.

it sends ICMP packets at regular intervals in order to observe the current

state of the emulated connection.

The main disadvantage of this emulator is the fact that experiments

are not reproducible–they strongly depend on the network conditions of the

connection which is emulated. The accuracy of the emulated delay depends

on the clock resolution and on the accuracy of the ping measurements.

ENTRAPID is a protocol development environment [11], that can aid the

design and implementation of “correct, efficient, scalable, and robust proto-

cols”. It allows the user to intuitively specify large test topologies and their

associated workload.

ENTRAPID protocol development environment combines the features of a

multi-kernel approach and general-purpose network simulation. In this ap-

proach, a single FreeBSD kernel maintains multiple copies of kernels, called

Virtualized Networking Kernels (VKNs), one for each machine in the emu-

20 CHAPTER 2. EXISTING COMPUTER NETWORK EMULATORS

lated network configuration. This eases the development of routing proto-

cols, which, by their nature span multiple machines.

At the top level, ENTRAPID is a process running in the user space and

can interact with other processes and with the network interface cards. It

supports several hundreds of VKNs, therefore large network topologies can

be emulated.

NIST Net. The NIST Net network emulator [15] [16] is developed by the

National Institute of Standards and Technology (NIST)4. It is a network

emulation package that runs on Linux, allowing any ordinary PC5 to em-

ulate a wide range of network conditions. NIST Net emulates “common

network effects” such as packet loss, duplication or delay, router congestion

and bandwidth limitations. It can emulate “performance dynamics” in IP

networks and the “critical end-to-end performance characteristics imposed

by various wide-area network situations”.

NIST Net is implemented as a kernel module extension to the Linux op-

erating system and an X Windows System-based user interface application.

Its architecture is presented in Figure 2.6.

Linux
kernel Stat gen

(int code)

User level

Network

Application code (FP code)
Stat setup NIST Net

user interface
Other user
interface

Socket code

IP level code

clock code
Real time

Net device code

External handler

Packet processing
Drop/Dup/Delay

Packet intercept

Fast timer Scheduling

matching
Packet

NIST Net kernel module

Figure 2.6: NIST Net architecture.

The NIST Net kernel module intercepts the IP packets at kernel level and

classifies them based on user-defined rules. After classification, it determines

if the packets are to be processed (i.e., delayed or dropped) and then it

4http://www.nist.gov/
5The PC must have 2 network interface cards and must be configured as a router.

2.3. DISCUSSION 21

forwards the packets to the Linux IP level code. For better time accuracy,

NIST Net makes use of it own fast timer, which takes control of the system

real-time clock.

NIST Net uses a set of statistical routines to generate the parameters

for the impairments it applies to network traffic. The user can specify the

average and the standard deviation for the delay and the loss the emulator

can introduce.

ONE. The Ohio Network Emulator (ONE) is implemented on a Sun worksta-

tion, running the Solaris OS. It can emulate a certain network by specifying

its topology.

ONE alters the network traffic based on several user-configurable param-

eters. The delay introduced by the emulator has three components:

• Transmission Delay - is the amount of time it takes to transmit a

packet onto a given channel, and is computed as the ratio between the

packet size and the bandwidth of the channel,

• Queueing Delay - for a given packet is the sum of the service times of

the precedent packets already in the queue.

• Propagation delay - is the time needed by a packet to travel along a

physical channel and is dictated by the speed of light through that

particular medium.

The user can specify the linespeed and the propagation delay for the links

between the emulated nodes. The size of each queue of a given interface can

also be specified. Packet loss introduced by the emulator occurs when the

queues are full.

2.3 Discussion

Anuē is the simplest network emulator, able to only emulate constant de-

lays. Network emulators like Hammer PacketSphere, Simena, Delayline,

Dummynet and NIST Net allow the user to chose between predefined distri-

butions for the loss and delay they introduce. Unfortunately, the delay and

the loss are random and uncorrelated. PacketStorm 4XG, Shunra Virtual

Enterprise, ENDE and ENTRAPID are topology-based network emulators.

They emulate specific networks which are completely defined by the user.

Albeit the fact that the ONE network emulator is also topology-based, it

introduces a more realistic degradation: the loss occurs when its internal

22 CHAPTER 2. EXISTING COMPUTER NETWORK EMULATORS

queues are full, and the delay takes into account the queueing delay, the

propagation and the transmission of the packets. For further reading, var-

ious network emulation testbeds, like Emulab, PlanetLab or ORBIT, are

described in [63]. The book also describes the emulators already presented

in this book, but a different perspective is proposed.

The software network emulators lack precision, i.e. the degradation they

introduce cannot be accurate. In any system, the packet loss is the result of

a critical race for resources: a loss occurs at a certain moment depending on

the relative timing of the packets. Any shift in this relative timing, due to

lack of precision, generates a different loss pattern, resulting in a different

application behaviour. Another drawback of the software network emulators

is the fact that their performance strongly depends on the characteristics

of the PC that is used. The frequency of the CPU, the data rate of the

PCI or the efficiency of the network interface cards are only few examples of

PC characteristics that influence the performance of the software network

emulators.

Most of the existing network emulators are network topology oriented.

They emulate a particular network, by using a node-by-node representation.

The main drawback of all emulators is the fact that the loss and the delay

they introduce is not correlated, therefore the degradation that a certain

traffic flow will experience is not realistic. Because each packet is treated

independently, the delay variation may lead to packet reordering which in

real network equipment cannot occur when there is only one way from the

input port to the output port. The delay variation should be naturally

induced as the consequence of variations in the experienced service time,

due to the presence of other traffic flows. Also the original packet sequence

should be preserved inside a certain stream, so that no artificial packet re-

ordering is introduced.

Chapter 3

Emulation. Principles and

Techniques

In this chapter we present the basic principles of network emulation, based

on observations on how the quality degrades in the order 1 networks (see

the taxonomy introduced in section 1.4). These principles are to be seen

as general guidelines that would ensure the realism of network emulation.

They create the context for the emulation techniques presented afterwords.

We identified two main techniques for the emulation of networks. The

first approach is to directly emulate the background traffic within the queues

of the network emulator, in order to alter the foreground traffic. The second

approach is to view the capacity available to service the foreground traffic

as being diminished by the processing for the background traffic, by using a

server with vacations. We shall present each of these approaches and then,

in the following chapter we shall illustrate their time-trace equivalence.

3.1 Principles of network emulation

The loss and delay can characterize any network. They can be the parame-

ters of the quality degradation introduced by networks. According to IETF

IPPM, the one-way delay [47] is defined as the difference in time between

the reception of the last bit of a packet and the transmission of its first bit.

The one-way loss [48] is defined to be zero when a packet is received within

a certain finite time interval.

We start this section by observing an order 0 network. Packets are

transmitted over the wire from one end to the other, and during this pro-

cess they experience a certain quality degradation. Transmission degrades

quality in two ways: (i) by introducing a constant delay due to propagation

23

24 CHAPTER 3. EMULATION. PRINCIPLES AND TECHNIQUES

through the transmission media, and (ii) by potentially introducing a fixed

amount of loss, as consequence of the bit error rate (BER) characteristic

of that particular media. This amount is a worst-case value over a specific

time interval. The BER of the transmission media can be neglected, given

its usually insignificantly small values–e.g., 10−12 for Gigabit Ethernet on

optical fiber [58]. These observation lead to the first two principles:

P1: Delay has a fixed component due to propagation through transmission

medium.

P2: Loss has a fixed component due to transmission impairments.

We shall analyze the degradation likely to be introduced by one queue,

i.e., an order 1 network. Assuming the input rate is larger than the output

rate, the queue will start to fill up. As the queue fills, the experienced delay

will increase and when the queue becomes full, the delay experienced by

packets reaches a maximum value, dmax (see Figure 3.1 (a)). The moment

when the first packet loss occurs coincides with the moment when the queue

becomes full, tfull (see Figure 3.1 (b)).

Delay

0 Timet full

dmax

0 Timet full

1

Loss

(a) (b)

Figure 3.1: Delay (a) and loss (b) vs. time for a queue getting full.

The loss is therefore correlated with the delay. In the presented scenario

loss cannot occur when the delay is less than dmax. The example above

illustrates the third principle of network emulation:

P3: Loss and delay are correlated.

This third principle applies to order 1 networks or higher-order networks,

where the intrinsic correlation between loss and delay reflects the competi-

3.1. PRINCIPLES OF NETWORK EMULATION 25

tion for resources. For order 0 networks, the loss and the delay induced in

the process of transmission are not necessarily correlated.

Treating the probability of loss and the experienced delay as independent

random variables, as most of the existing network emulators do, may lead to

unrealistic scenarios, unlikely to appear in real networks. When emulating

networks, packets in a flow should not be treated independently, but as

part of the context created by the traffic flow they belong to. Each packet

experiences the degradation induced by the history created by the previous

packets of the traffic flow.

The packets that get enqueued wait for service. The time spent by a

packet in the queue is determined by the service time of the previous packets

already enqueued. This time varies, depending on the traffic pattern and

the distribution of the packet service time.

P4: Delay has a variable component induced by the competition for service.

Loss generally occurs when resources are exhausted. The competition

between packets for getting into the buffer space is the source of loss.

P5: Loss is induced by the competition for buffer space.

The observations above along with the fore mentioned principles lead to

the following two corollaries:

C1: Delay has two components—the fixed delay due to transmission through

media and the variable delay induced by contention for service.

C2: Loss has two components—the fixed amount of loss due to transmission

impairments and the variable loss induced by contention for service.

If only one traffic flow enters one queue, that the competition is between

consecutive packets. This is the case of “intra-stream contention”1. If mul-

tiple traffic flows compete for having access to the same queue or the same

resources, than the case is of a “inter-stream contention”.

The packets in a flow create a certain history of the queue or network ele-

ment, therefore any new packet experiences the effects induced by precedent

1The terms intra-stream contention and inter-stream contention are from a personal

communication with Neil Davies from Predictable Network Solutions, UK.

26 CHAPTER 3. EMULATION. PRINCIPLES AND TECHNIQUES

packets. The consequence is a variation in packet experienced delay. The

IP Packet Delay Variation, IPDV [52], is defined as the difference between

the one-way delay of two packets: IPDV = Di −Dj . The two packets can

be consecutive packets or can be chosen according to a selection function.

IPDV can also be computed as the difference between the delay of the cur-

rent packet and a reference delay value, like the average or the minimum

delay.

The term jitter is used to refer to the absolute value of IPDV, computed

for consecutive packets. Jitter is the natural consequence of the other traffic

packets being serviced, to the detriment of the packet belonging to the traffic

of interest. This stands for order 1 and order 2 networks.

P6: Jitter is consequence of presence of other traffic sharing the resources.

When emulating network elements like switches, packet reordering is in

contradiction with the Ethernet standard [42], which specifies that packet

order within a traffic flow should be preserved during the switching pro-

cess. Artificially introduced jitter may lead to packet reordering. This can

happen in most of the existing network emulators, if packets are treated

independently so that the delay is applied independently.

Let’s consider the following example. Two consecutive packets arrive

at ta1 and ta2 (see Figure 3.2). If independent delay values are applied

independently without preserving the initial order of packets, the two packet

can be swapped.

Figure 3.2: Independently applied delay.

In Figure 3.2 ipata is the initial inter-packet arrival time, ipatd is the

inter-packet arrival time at departure, D1 and D2 are the two delay values

and td1 and td2 are the departure times of the two packets. The instanta-

neous jitter is:

3.2. BACKGROUND TRAFFIC TECHNIQUE 27

j = |D2 −D1| = D1 −D2 = ipata + ipatd > ipata (3.1)

If the instantaneous jitter is larger than the initial inter-packet arrival

time, the packets will be re-ordered.

In order 3 networks, packet reordering may appear when the route

changes, so packets belonging to the same traffic flow arrive at destina-

tion on different routes. However, there exist network elements that have

multiple paths from one input port to the same output port. This architec-

ture is likely to reorder packets in the same traffic flow when the input load

exceeds a certain threshold. Out-of-order packets were observed in tests in

real networks over long-haul connections for which the route was statically

configured and remained the same during the measurements [51], [50].

3.2 Background traffic technique

The background traffic can be considered to be either passive or active. The

background traffic is considered to be passive if its sources send only UDP-

like traffic or inelastic traffic. Passive background traffic can also be seen as

a good approximation for the case when the network element is being shared

by a large number of flows. In this situation, no individual flow will have a

substantive effect on the sum of the other traffic flows and as such we can

appeal to the statistical properties of large populations. On the other hand,

should one wish to study the interaction between the foreground traffic and

TCP-like traffic, the background traffic has to be elastic or reactive2 to

the foreground traffic. This requires a closer emulation of the end point’s

behaviour.

3.2.1 Passive background traffic

The background traffic is said to be “passive” when it doesn’t modify its

properties with respect to the pattern of the traffic of interest. Therefore,

the emulation of the background traffic is independent on the pattern of the

input traffic, whatever that pattern may be.

Constant-load background traffic. This is the simplest algorithm which

is implemented in our network emulator, and corresponds to the emulation

of order 1 networks. It uses one queue for both the foreground traffic and

2In the same sense as the TCP modifies its transmission rate to compete with other

traffic flows in order to occupy the entire available bandwidth.

28 CHAPTER 3. EMULATION. PRINCIPLES AND TECHNIQUES

the background traffic (see Figure 3.3). A fixed amount of the available

bandwidth is occupied by the background traffic. The queue is serviced at

a constant rate, so a fixed amount of bandwidth is available for the fore-

ground traffic. This is equivalent to using rate limitation mechanisms from

the point of view of the effects on the foreground traffic.

Straffic
Foreground

traffic
Background

Figure 3.3: One queue scenario.

Variable-load background traffic. This algorithm emulates the case

when the available bandwidth for the foreground traffic varies because the

other traffic flows that share the same resources have a variable load. When

more traffic flows share the same network, one can differentiate between

them and service them according to the importance of each of them. Service

classes refer to the possibility of defining different types of traffic and apply

different treatment to them.

Depending on the service class to which the background traffic belongs

to, there are several cases to be emulated. The first case is when both the

foreground traffic and the background traffic belong to the same service

class. The competition for getting into the same queue will cause loss, while

the foreground traffic will experience a variable queueing delay and service

rate as a result of servicing the background traffic.

The second case is when the foreground traffic and the background traf-

fic belong to different service classes and are assigned to separate queues

(see Figure 3.4). The background traffic will then influence the service pro-

vided to the foreground traffic in a manner that depends on the scheduling

mechanism implemented in the MUX.

To give an example of the possible influence of the scheduling mechanism,

let’s consider the case of Strict Priority being implemented in MUX. Two

cases can be distinguished: (i) the background traffic has higher priority

– the foreground traffic will not be serviced while the background traffic

queue is non-empty; and (ii) the background traffic has lower priority –

the foreground traffic will only be affected by the background traffic if such

3.2. BACKGROUND TRAFFIC TECHNIQUE 29

M
U
X

traffic

traffic

S

Class A

Class B

Foreground

Background

Figure 3.4: Different service classes scenario.

packets arrive during the transmission of background traffic packets that

started when the foreground traffic queue was empty.

The general model combines all the previously mentioned cases in a sit-

uation when background traffic is assigned to classes with the same priority

and different (higher and lower) priorities than the foreground traffic. We

aim at building this general model based on the simple models described

above. This corresponds to the emulation of order 2 networks.

3.2.2 Active background traffic

The background traffic is said to be “active” when it does adjust its temporal

properties, as a function of the varying temporal properties of the foreground

traffic. This kind of emulation permits the study of the interaction between

“elastic” traffic flows, i.e. flows that adapt their rate to network conditions

in order to make better use of the available bandwidth.

The emulation of an active background traffic requires the use of a feed-

back mechanism, one that adjusts the rate or the burst size of the back-

ground traffic source by means of a rate control system (RCS). An outline

basic scheme is presented below.

S

RCS Delay

Event detector

traffic
Foreground

traffic
Background

Figure 3.5: The active background traffic emulation.

30 CHAPTER 3. EMULATION. PRINCIPLES AND TECHNIQUES

The feedback on the reverse path emulates the rate control mechanism,

such as the acknowledgment-based TCP feedback. A module will detect the

significant events (e.g. packet loss) triggering the modification of the output

rate of the source of background traffic. This makes it possible to emulate

the effects of the TCP slow start or congestion avoidance algorithm or the

modification of the rate of an UDP stream (e.g. decrease of transmission

rate by change of codec during congestion, for a VoIP application). An

additional module introduces a user-configurable delay that represents the

length of the reverse path and provides a realistic delayed feedback.

3.2.3 Multiple background traffic sources

A general scheme for the emulation of an order 1 network is presented in

Figure 3.6. Multiple sources of both passive and active background traffic

are used in order to have a realistic emulation.

ST1

ST2

STN

SU1

SU2

SUM

D

D

D

D

D

D

T1

T2

TN

U1

U2

UM

M
 U

 L
 T

 I
P

L
E

X
 E

 R

D
 E

 M
 U

 L
 T

 I
P

L
E

X
 E

 R

QUEUE

Δ

Δ 2

Δ 1

N

Figure 3.6: General architecture for the emulation of order 1 networks.

ST i are N sources of TCP-like traffic, DT i are N destinations for the

TCP-like traffic, Δi are elements that delay the feedback from the destina-

tions of the TCP-like traffic, emulating different RTTs, SUi are M sources

of UDP-like traffic and DUi are M destinations for the UDP-like traffic.

The complexity of this general architecture increases if the number of

sources increases. Such an architecture is difficult to implement and may

3.3. SERVER WITH VACATIONS TECHNIQUE 31

require the dynamic allocation of the resources. A more compact architec-

ture can be imagined (see Figure 3.7).

SU DU

QUEUE
S DT T

M
U

LT
IP

LE
X

ER

D
EM

U
LT

IP
LE

X
ER

Foreground traffic

Δ

Foreground traffic

Figure 3.7: Compact architecture for the emulation of order 1 networks.

The sources of background traffic are replaced by only two sources, one

for active and one for passive background traffic, respectively. The equiv-

alent sources are obtained by aggregating all the sources into one single

model. This architecture is more appropriate to implement, regardless the

number of the desired background traffic sources. It can also be used to

emulate order 2 networks, by implementing more queues and a scheduling

scheme.

3.3 Server with vacations technique

An alternative approach to emulating the behaviour of order 1 and order 2

networks is the one of server with vacations3. In this approach the effects of

the background traffic on the foreground traffic are emulated by the service

being temporarily unavailable (the server S is “on vacation”). From the

point of view of the foreground traffic, the server is not available for certain

intervals of time, equivalent to the period when other traffic is being serviced.

SForeground
traffic

ON VACATION

Figure 3.8: Server with vacations.

3The term “server with vacations” is used in the queueing theory-related literature to

denote a server whose services are unavailable for the traffic of interest because of various

reasons.

32 CHAPTER 3. EMULATION. PRINCIPLES AND TECHNIQUES

The main advantage of this approach is that it is not necessary anymore

to generate virtual background traffic, the effect of the large number of

flows being emulated by the rate and duration of the vacations taken by the

server. This is useful given that the number of such flows can be very large

in complex scenarios, which would require a high computational complexity.

The discussion above is valid for the case of passive background traffic.

More elaborate vacation models must be employed when emulating active

background traffic. A possible solution may use a vacation predictor to

determine the moments when the server is on vacation, depending on how

the equivalent active background source adapts its transmission rate. In

other words, the vacation predictor varies the apparent service rate, as a

consequence of the interaction with other traffic flows.

3.4 Approach equivalence

The server with vacations approach is more attractive due to its lower com-

putational costs. However, one must make sure that there exists an equiv-

alence between this approach and the background traffic approach. In this

case, the properties of the equivalent server with vacations will be deter-

mined. There is the potential for many different levels of equivalence:

SAME OBSERVED OUTCOME

S

S

Foreground
traffic

traffic
Background

Foreground
traffic

ON VACATION

Figure 3.9: Background traffic versus server with vacations.

1. trace-level equivalence – the time traces of the foreground traffic flows

at the output of the two systems are identical

2. statistical-distribution-level4 equivalence – the probability density func-

4e.g. probability density function (PDF).

3.5. EMULATING MULTIPLE HOPS 33

tions of the output foreground traffic flows in the two cases are “equal”

by a goodness-of-fit test, like chi-square [18],

3. application-level equivalence – the observable behaviour of the appli-

cation is the same for both cases

The equivalence (1) is a strict-sense equivalence, whereas the last two are

equivalences on the basis of a certain aggregate measure. Hence, two systems

equivalent in the first acceptation will also be equivalent in acceptations (2)

and (3). However, the last two equivalence measures do not imply each

other, as illustrated in Figure 3.10. One can envisage a case when two

traffic flows with equivalent PDFs, produce different application behaviour

because of the different time pattern of the flows.

For example, for TCP-based applications, the outcome may differ signif-

icantly, depending on the type of packets that are lost: if data packets are

lost, they are retransmitted as soon as their loss is detected, i.e. after one

RTT. Control packets, like connection establishment packets are retransmit-

ted after a timer, usually of 1 second, expires.

PDF−level
equivalence equivalence

equivalence
Trace−level

Application−level

Figure 3.10: Levels of equivalence.

Our main interest lies in the application-level equivalence, i.e. end-user

perceives the same application performance. We shall assume that the back-

ground traffic is passive, that allows us to simplify the task of finding the

relationship between the distribution of the vacations and the distribution

of the background traffic (see Section 4.4).

3.5 Emulating multiple hops

More hops can be emulated by concatenating queues and wires. In the spirit

of background traffic approach, two queues can be concatenated as shown in

Figure 3.11. Two scenarios can be identified: (i) the background traffic from

source 1 goes along with the foreground traffic through the second queue ;

(ii) the background traffic from source 1 exits the first queue, i.e., it shares

only the first segment with the foreground traffic.

34 CHAPTER 3. EMULATION. PRINCIPLES AND TECHNIQUES

S
Foreground

Background S
Background
traffic

Q
Q

1 1

2 2

traffic

traffic
source 1

source 2

S
Foreground

Background S
Background
traffic

Q
Q

1 1

2 2

source 2

traffic
source 1

traffic

Figure 3.11: Emulating two concatenated queues - scenarios.

Another example illustrates the case when only certain segments of the

same network are shared by the traffic flows. The following figure shows an

order 3 network, with four routers and six end nodes. Consider the case

when there are three sources that send traffic to three destinations.

S1 S2 D
2

D1

S D
L L L1 2 3

R 1 R2 R3 R 4

Figure 3.12: Example of traffic flows sharing routes.

The traffic of interest would be from source S to the destination D.

This traffic shares the same network with the background traffic (i.e. traffic

from S1 to D1 and traffic from S2 to D2). In this particular situation,

only the link L2 is shared between all three traffic flows. When emulating

order 3 networks the path of each traffic flow has to be taken into account.

The quality degradation introduced by each order 1 and order 2 network

depends on the traffic pattern. The overall behaviour of the order 3 network

will depend on the routes chosen for the traffic flows.

Chapter 4

Emulation. The Models

Queueing theory makes use of probabilistic techniques to study waiting line

phenomena. It allows computing mean values that characterize a queue, like

the expected steady-state number of customers in the queue or the mean

steady-state time a customer spends in the queueing system, based on the

arrival traffic pattern and the service time distribution.

We present here a temporal model, that permits to determine the time

trace of the output traffic, when the time trace of the input traffic and the

service time for each packet are known. The results will be validated by

simulating the queues in Python programming language. The consistency

of this approach with classic queueing theory will be proved by comparing

the results of our model and of simulations against the results of queueing

theory.

Having this model of a queue, it is possible to combine queues and to

obtain a single model exhibiting the same properties as a complex system.

As an example, the equivalent model for two concatenated queues will be

determined. The same model will be used to determine the server vacations,

thus emulating the effects of the background traffic being serviced.

4.1 Queueing theory

We briefly present here the M/M/1 and the M/M/1/K models, representing

an infinite and a finite queue, respectively. According to Kendall notation

[18], M/M/1 represents a system with exponential inter arrival distribution

(the first M), exponential service time distribution (the second M) and 1

server. K indicates the system capacity, i.e., the maximum number of cus-

tomers allowed in the system, when the queue is finite.

Using the formulae in [18] we plot the average delay and loss character-

35

36 CHAPTER 4. EMULATION. THE MODELS

istics of these two queue models1, as functions of offered load (see Figures

4.1 and 4.2).

4.1.1 M/M/1

The steady state probability that there are n customers in the system is:

pn = (1− ρ)ρn (4.1)

where ρ is the server utilization, expressed as the ration between λ, the

mean arrival rate of customers in the system, and μ, the mean service rate

(the mean rate of service completion while the server is busy).

Expected steady state time a customer spends in the system is:

W =
WS

1− ρ
(4.2)

where WS is the expected customer service time, 1
μ . The expected num-

ber of customers in the queueing system, L is given by:

L =
ρ

1− ρ
(4.3)

Figure 4.1: M/M/1 model queue occupancy as function of server utilization.

4.1.2 M/M/1/K

In this case, pn, the steady state probability that there are n customers in

the system is:

pn =

{
(1−a)an

(1−aK+1)
if λ �= μ

1
K+1 if λ = μ

(4.4)

1M/M/1 does not have a loss characteristic, since the queue is infinite.

4.2. A TEMPORAL MODEL 37

where a is the traffic intensity or the offered load.

a = λWS (4.5)

The international unit of traffic intensity is the erlang, named for A. K.

Erlang, a queueing theory pioneer.

a = λWS =
λ

μ
= ρ (4.6)

The probability of loss is equal to the probability of having the queue full,

i.e. of having K customers in the system. Remember that K is the capacity

of the system (the length of the queue). In Figure 4.2 the probability of

queue full was plotted as function of server utilization, for several queue

sizes: 1, 2, 5, 10, 20 and 50. One can notice that as the size of the queue

increases, the probability of loss decreases. The queue occupancy is given

by:

L =

{
a[1−(K+1)aK+KaK+1]

(1−a)(1−aK+1)
if λ �= μ

K
2 if λ = μ

(4.7)

Figure 4.2: M/M/1/K model - probability of queue full as function of server

utilization (left) and queue occupancy as function of offered load (right).

4.2 A temporal model

Let us consider a generic queue (see Figure 4.3). The input traffic is charac-

terized by the arrival times of the packets, denoted by X, and the associated

service times, S.

For given X and S we want to determine the departure times, denoted

by Y . X, S and Y represent discrete time values.

38 CHAPTER 4. EMULATION. THE MODELS

X = {x(n)|n = 0, N − 1} (4.8)

S = {s(n)|n = 0, N − 1} (4.9)

Y = {y(n)|n = 0, N − 1} (4.10)

The service time of the packets is expressed in the same time units as the

arrival and departure time. All these time values can be expressed in quanta

of 1 ns, for instance. For 10 Gigabit Ethernet, the first bit of a packet can be

transmitted at any moment in an interval of 1 ns [43]. However, one could

determine the distance error between the model and a real transmission

mechanism, but this is not our purpose.

Imagine the following model of a queue: the queue is a tube, and inside

this tube there is a disk that can slide. The disk slides to the left when

a packet arrives into the queue, and slides to the right each time a packet

leaves the queue (see Figure 4.3): w(n) is the waiting time for the nth packet,

or the work-load of the queue at the moment when the nth packet arrives.

YX, S

packet departurepacket arrival

s(n) x’(n)

w(n)

Figure 4.3: A queue and its temporal model.

When a packet is enqueued, the disk moves to the left with the amount

of time needed to service that packet (i.e. the service time for that packet,

s(n)). Then the disk slides to the right with the amount of time between two

packet arrivals, x(n)− x(n− 1). This means that during that time interval,

the queue gets serviced and its work-load decreases with the corresponding

amount of time.

The inter-packet arrival time for the nth packet is:

x(n)− x(n− 1) = x′(n) (4.11)

which is the discrete first derivative of the arrival time,

We shall use this model to analyze a finite and an infinite queue. The

queues will be also simulated and the results—the measured loss and delay—

compared against the results presented in sections 4.1.1 and 4.1.2. Then,

the model will be used to prove the equivalence between the background

traffic generation and the server with vacation approach (see Section 4.4).

4.2. A TEMPORAL MODEL 39

4.2.1 An infinite queue

Let us consider the case of an infinite queue. The queue has two states:

empty and non-empty. The initial position of the disk indicates an empty

queue. If we make the assumption that the queue is never empty, the de-

parture times are given by:

y(0) = x(0) + s(0)

y(1) = x(1) + s(0) + s(1)− [x(1)− x(0)]

y(2) = x(2) + s(0) + s(1) + s(2)− [x(1)− x(0)]− [x(2)− x(1)]

y(n) = x(n) +

n∑
i=0

s(i)−
n∑

i=1

x′(i) (4.12)

From the last expression we can determine the waiting time for the nth

packet, which is:

w(n) =

n∑
i=0

s(i)−
n∑

i=1

x′(i) (4.13)

The formula 4.12 can be further simplified to:

y(0) = x(0) + s(0)

y(1) = x(0) + s(0) + s(1)

y(2) = x(0) + s(0) + s(1) + s(2)

y(n) = x(0) +

n∑
i=0

s(i) (4.14)

We shall now determine the condition for the queue to be empty. The

nth packet finds the queue empty if its arrival time, x(n), is larger than the

departure time of the previous packet, y(n− 1):

x(n) > y(n− 1) (4.15)

Using the formula 4.13, we get:

x(n) > x(0) +

n−1∑
i=0

s(i) (4.16)

x(n)− x(0) >

n−1∑
i=0

s(i) (4.17)

i.e. the total time elapsed between the arrival of the first packet and the

arrival of packet nth becomes larger than the sum of the service time for all

40 CHAPTER 4. EMULATION. THE MODELS

the packets, meaning that the server finished servicing all the jobs in the

queue and it idles.

We can conclude that the departure times are given by:

y(n) =

⎧⎪⎨
⎪⎩

x(n) + s(n) if the queue is empty

x(k) +
n∑

i=k

s(i) if the queue is not empty
(4.18)

where k is the index of the packet that finds the queue empty.

The general formula for the departure time would be:

y(n) = x(k) +
n∑

i=k

s(i) | x(k)− x(j) >
k∑

i=j

s(i) (4.19)

where j, as well as k, are the indices of the packets that found the queue

empty consecutively.

An M/M/1 queue was simulated in Python and the measured average

delay over five runs is presented in Figure 4.4 as function of load. The time

traces of the simulation, for the arrival times and service times were used

to compute the departure times, using formula 4.19. The results of the

simulation matched exactly the results given by the formula.

In the M/M/1 model, packet arrivals and departures are seen as point-

processes, i.e., packets are enqueued and dequeued instantaneously. The

service time is spent entirely in the service facility. The same conditions

apply as well to the simulation in Python.

Figure 4.4: The average delay as function of offered load.

The average delay is expressed in packet service time (PST). This plot is

similar to 4.1 showing the average queue occupancy predicted by the M/M/1

model. Multiplying the average queue occupancy, L, with the average PST,

one can obtain the average delay for that queue.

4.2. A TEMPORAL MODEL 41

4.2.2 A finite queue

A finite queue can be described as an algorithmic state machine (ASM)

which has three states: empty, non-empty and full. In this case, the depar-

ture times are given by:

y(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(n) + s(n) if the queue is empty

x(k) +
n∑

i=k

s(i) if the queue is not empty and not full

∞ if the queue is full

(4.20)

When the queue is full, packets are dropped. We can consider that a

dropped packet will never leave the queue, i.e., its departure time is ∞.

The nth packet is enqueued if:

n∑
i=k

s(i) ≤ queue length (4.21)

or dropped, otherwise. The length of the queue is expressed in time. A

packet is not enqueued unless there is sufficient space (service time) in the

queue for the entire packet.

An M/M/1/K queue was simulated in Python, for several queue sizes: 1,

2, 5, 10, 20 and 50. The average delay and the loss are plotted as functions

of the offered load in Figure 4.5.

Figure 4.5: The average delay (left) and loss percentage (right) as function

of offered load.

The time traces of the simulation, for the arrival times and service times

were used to compute the departure times, using formula 4.20 given by the

temporal model presented in this chapter. In the simulation the length of the

42 CHAPTER 4. EMULATION. THE MODELS

queue was expressed in bytes and the dequeueing of packets was performed

incrementally in quanta of a certain number of bytes. The results of the

simulation matched exactly the results given by the formula, the two time

traces of the packet departure times were observationally identical.

4.3 Model comparison

In this section, the simulation results are compared against the theoretical

values predicted by the queueing theory.

The average delay measured in the process of simulating an infinite queue

is compared with the one predicted by the M/M/1 model (see Figure 4.6).

One can notice that, in simulation, the average delay is slightly larger than

the one predicted in theory.

Figure 4.6: Average delay for M/M/1 and a simulated infinite queue.

The average delay and loss percentage measured during the simulation

of a finite queue are compared with the corresponding values predicted by

the M/M/1/K model (see Figure 4.7).

The average delay is slightly larger for loads smaller or equal to 1, similar

to the case of an infinite queue. For loads larger than 1, the average delay is

smaller than the one predicted in theory. The answer to these discrepancies

resides in the different behaviour of the loss (see Figure 4.7). When ρ ≤ 1,

the loss is smaller than in theory, therefore more packets are enqueued and

the average delay increases with the queue occupancy. For ρ > 1 the loss

in simulation is larger, leading to a decreased queue occupancy and average

delay.

However, the simulation is closer to what happens in a real system that

4.4. SERVER WITH VACATIONS 43

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

45

50

ρ

A
ve

ra
ge

 d
el

ay
 [P

S
T]

Finite queue

1
2
5
10
20
50
1
2
5
10
20
50

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

ρ

P
ac

ke
t l

os
s

[%
]

Finite queue

1
2
5
10
20
50
1
2
5
10
20
50

Figure 4.7: Average delay and packet loss for M/M/1/K and a simulated

finite queue.

handles packets, for at least two reasons: (i) packets are serviced in data

chunks and (ii) the packet arrival is not a point process like the assumption

made by the queueing theory. Given that our temporal model matches the

results of the simulation, we consider it to be a good approximation for the

quality degradation that occurs in order 1 networks.

4.4 Server with vacations

Using the temporal model described in section 4.2 we shall determine the

time and duration of the server vacations, for a given background traffic

pattern. In other words, starting from a background traffic scenario, we can

find the equivalent server with vacations that will cause the same quality

degradation to the traffic of interest.

4.4.1 Emulating the delay

We shall start with an infinite queue, in order to determine the equivalent

server with vacations from the point of view of delay. The fact that the

queue is infinite is a necessary condition so that there will be no loss.

Determining the vacations means determining the moments in time when

the server in on vacation and their durations. For the foreground traffic, the

equivalent delay will be induced by these vacations. The background traffic

source will be replaced by a server vacation source. A background packet

generated at time t0 will be replaced by a server vacation at time t0 + w,

where w is the waiting time in the queue for the background packet, given

by the service times of the packets already in the queue. The duration of the

44 CHAPTER 4. EMULATION. THE MODELS

server vacation is equal to the service time of the background traffic packet.

Let us consider now the case with both foreground traffic, x(n), and

background traffic, b(n), entering in the same queue, like in Figure 4.8.

S

X

B

Y

S
YX

Infinite queue

VG

Figure 4.8: Foreground and background traffic (left) and infinite queue with

a server vacation generator (right).

Given a certain foreground traffic pattern—characterized by its arrival

times, x(n), and the corresponding service times, sx(n)—and a certain back-

ground traffic pattern—characterized by its arrival times, b(n), and the cor-

responding service times, sb(n)—we wish to determine the moments when

the server is on vacation, denoted by v(n), and the duration of the vacations,

sv(n), so that the effects are the same for the foreground traffic.

From the point of view of the foreground traffic, servicing the kth packet

from the background traffic, characterized by the its arrival time b(k) and

its service time sb(k) is equivalent to a server vacation. This vacation has

the same duration as the background packet service time, so sv(k) = sb(k).

The moment when the server will take this vacation is given by the arrival

time of that background packet plus the necessary waiting time, i.e., v(k) =

b(k) + w(k).

We shall start from the formula 4.13 of the waiting time and take into

account that in the same queue packets from both the foreground and the

background traffic are eunqueued. The sum of the service times is composed

of two sums: the sum of the service time corresponding to the foreground

traffic,
∑k

i=j sx(i), and the sum corresponding to the background traffic,∑k
i=j sb(i).

w(n) =
k∑

i=j

sx(i) +
l∑

i=j

sb(i)−
n∑

i=j+1

a′(i) (4.22)

k + l = n (4.23)

where k is the number of packets in the queue that belong to the fore-

ground traffic and l is the number of packets representing the background

4.4. SERVER WITH VACATIONS 45

traffic. j is the index of a packet that found the queue empty. Depending on

the pattern of the foreground and the background traffic, the inter-packet

arrival times a′(n) are given by:

a′(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(n)− x(n− 1) if nth packet ∈ X and n− 1th packet ∈ X

x(n)− b(n− 1) if nth packet ∈ X and n− 1th packet ∈ B

b(n)− b(n− 1) if nth packet ∈ B and n− 1th packet ∈ B

b(n)− x(n− 1) if nth packet ∈ B and n− 1th packet ∈ X

The equivalent server with vacation is therefore characterized by:

⎧⎪⎪⎨
⎪⎪⎩

sv(n) = sb(n)

v(n) = b(n) + w(n) =
k∑

i=j

sx(i) +
l∑

i=j

sb(i)−
n∑

i=j+1

a′(i)
(4.24)

4.4.2 Emulating the loss

In order to emulate the loss, the system must emulate the resource occupa-

tion due to the presence of the background traffic. This implies varying the

length of the queue, i.e., the capacity of the system, so that the induced loss

is the consequence of resource exhaustion. Therefore the model is a finite

queue with variable length. The instantaneous value is determined based on

the pattern of background traffic, whose effects are to be emulated.

S
Y

VG

Variable length queue

X

Figure 4.9: Finite variable length queue with a server vacation generator.

The vacation generator also dynamically adjusts the size of the queue,

based on the queue history created by the foreground packets and the server

vacations. The duration of the vacations correspond to the service times of

an imaginary background traffic which no longer occupies space in the queue.

The space that is virtually occupied by packets from a background traffic

46 CHAPTER 4. EMULATION. THE MODELS

has to subtracted from the queue maximum size, so that the foreground

traffic experiences the same lack of resources.

The instantaneous queue length is computed as:

l = L−
k∑

i=0

sv(i) (4.25)

where L is the maximum size of the queue, expressed as service time, k

is the number of server vacations to be taken at the current time, and sv(i)

is the duration of ith vacation.

4.5 Ideal behaviour of scheduling mechanisms

Strict Priority (SP) and Weighted Round Robin (WRR) scheduling algo-

rithms are implemented in most of the current Gigabit Ethernet switches

and routers. Their behaviour is very well known, but the quality degradation

they introduce is only qualitatively studied. We accurately quantified the

quality degradation induced by these two scheduling mechanisms. Results

and detailed test configuration can be found in [36]. Here we only mention

that there are eight identical sources of traffic, that send packets to the same

destination. Each traffic flow has a different priority, i.e. goes in different

priority queues. All the sources have the same instantaneous load, which is

varied from zero to a certain percentage of the line speed.

4.5.1 Strict Priority

In this section we present a simple model for the behaviour of a system that

has two and four queues, serviced according to the SP scheduling algorithm,

for a particular input traffic. By definition, SP means that as long as there

are packets in a high priority queue, this queue is serviced, regardless of the

content of the low priority queues. Knowing the probabilities of having one

packet at the input of each queue, we compute the probabilities of having

at the output of the system a packet from a certain input queue.

We start by defining some basic terms. Having one queue and a constant

bit rate (CBR) ingress traffic, we want to determine the probability of having

one packet at the input of a queue, at a certain moment in time, knowing

the average rate of the incoming traffic.

4.5. IDEAL BEHAVIOUR OF SCHEDULING MECHANISMS 47

t p tg

CBR traffic

Observer
Queue

Figure 4.10: The CBR traffic at the input of a queue.

Let us note this probability with pi. The duration in time of a packet is

tp and the duration of the inter-packet gap is tg. At limit, the probability

of having a packet at the input of the queue is given by the ratio:

pi =
tp

tp + tg
(4.26)

When the input rate is zero, the inter-packet gap is infinity, so pi = 0.

When the input rate is line speed, the inter-packet gap has a minimum

value. For simplification we shall consider this minimum value to be zero

and therefore pi = 1. In Figure 4.11(a) we plot pi as function of the input

rate, which takes values from zero to 1, where 1 represents line speed (LS).

Consider a system with four queues, each one being serviced according

to a different priority: Queue #1 - highest priority, Queue #2 - high priority,

Queue #3 - low priority and Queue #4 the lowest priority.

We shall use the following notations: pij is the probability of having a

packet at the input of queue j, psj is the probability to service the queue j

and poj is the probability of having a packet from queue j at the output of

the system of queues. j = 1..4. Consider that there are four transmitters

that send CBR traffic with four different priorities and their transmission

rate is varied from 0 to 1 in the same time. This means that:

pi1 = pi2 = pi3 = pi3 = pi (4.27)

By definition, Strict Priority scheduling mechanism will service the high-

est priority queue as long as there are packets in it. The lower priority queues

will be serviced only at the moments of time when the highest priority queue

is empty. Making the assumption that the packet service time is the same

for all the packets in the system and the time needed to dequeue a packet

is zero, than the probability of having a packet serviced from the highest

priority queue equals the probability of having a packet at the input of the

highest priority queue:

po1 = pi1 = pi (4.28)

48 CHAPTER 4. EMULATION. THE MODELS

The probability of servicing the high priority queue will be 1 minus the

probability of having a packet at the output of the system from the highest

priority queue.

ps2 = 1− po1 = 1− pi (4.29)

The probability to have packets from the high priority queue is the mini-

mum between the probability of having a packet in the hight priority queue,

pi2, and the probability of servicing that queue, ps2:

po2 = min{pi2, ps2} (4.30)

If ps2 > pi, the queue can be serviced with a larger probability than the

probability of having packets in that queue. This means that the probabil-

ity of having a packet serviced is pi. If ps2 < pi, the probability of having

packets enqueued is larger than the probability of servicing the queue, then

having packets serviced from that queue will happen with the same proba-

bility of servicing the queue. Therefore:

po2 =

{
pi , for pi ≤ 0.5

1− pi , for pi > 0.5
(4.31)

Then po1 and po2 versus rate are depicted in Figure 4.11.

The probability of servicing the low priority queue ps3 is

ps3 = 1− po1 − po2 (4.32)

The probability po3 is:

po3 = min{pi3, ps3} (4.33)

Following the same idea, ps4 = (1− po1 − po2 − po3).

The SP mechanism for four queues was simulated in Python. Eight

sources of traffic were used. The results are plotted in Figure 4.12 as the

dependency of received load on transmitted load, per priority.

The points that define the behaviour of SP were denoted by �A , �B ,
�C and �D . They indicate the place where the decrease in quality starts, as

experienced by the traffic in queues q1 to q4, respectively. Point �A represents

the moment when the total offered load for all queues (q1 to q4) reaches 1

Gbps. Past �A , q4 starts experiencing loss. Point �B indicates that the total

load for queues q1 to q3 is 1 Gbps; thereafter, q3 loses packets as well and

q4 is starved. Point �C shows the moment when the total amount of traffic

in queues q2 and q3 reaches 1 Gbps. From this onward, packet loss occurs

4.5. IDEAL BEHAVIOUR OF SCHEDULING MECHANISMS 49

0
0

1

ip

rate1

(a) pi vs. rate

Legend:
p

p

0.5

0.5

o1

o2

0
0

1

rate1

(b) po1 & po2 vs. rate

Legend:
p

0.5

o1

0.5

po3

p
o2

0.33

0.330
0

1

1 rate

(c) po1, po2 & po3 vs. rate

Legend:
p

p

0.5

0.5

p

p

o1

o2
o3

o4

0.33

0.25

0.25

0.330
0

1

1 rate

(d) po1, po2, po3 & po4 vs. rate

Figure 4.11: Probabilities vs. rate for SP.

for q2. Starting at point �D q1 is saturated and the received traffic is limited

to 500 Mbps for each of the priorities 6 and 7. Everything else is lost.

If the maximum transmission rate was 500 Mbps, the points �A (125,

125), �B (165, 165), �C (250, 250)and �D (500, 500) have the same coordinates

as in figure 4.11. The results of the simulation therefore match the results

theoretically determined.

For the highest priority, in saturation, the delay introduced is given by

the size of the queue. For the other queues, the delay introduced depends on

the pattern of the traffic with the higher priority. For example, the packets

in the second priority queue will wait until the highest priority queue empties

before they are serviced.

50 CHAPTER 4. EMULATION. THE MODELS

4.5.2 Weighted Round Robin

WRR is a variant of the Round Robin mechanism [44] that services each

priority queue in a cyclic manner, proportionally to its associated weight.

This allows control of the minimum amount of bandwidth guaranteed for

each priority queue. The average delay for each traffic flow is bounded and

can be estimated a priori. The values that represent the relative weights

for the queues, also represent the expected ratios between the throughput

of each queue.

The WRR algorithm was simulated in Python and the results are shown

in Figure 4.12. They represent the expected ideal behaviour of WRR schedul-

ing (a work-conserving mechanism). Again, we assume the case of a switch

with Gigabit Ethernet ports and four priority queues. The corresponding

weights are as follows: 0.4 for q4, 0.3 for q3, 0.2 for q2 and 0.1 for q1. Sat-

uration occurs when all transmitters send traffic at 125 Mbps (point �E),

thereafter service differentiation appears. Starting at point �F bandwidth

guarantees are enforced.

(a) SP (b) WRR

Figure 4.12: Simulation results - received vs. transmitted load.

4.6 A Quality Degradation Algebra

We have found so far a mathematical representation for order 0 and order

1 networks. For the emulation of order 2 networks we analyzed the ideal

behaviour of two widely-used scheduling algorithms. For SP, a theoretical

model is presented and showed that its result match the ones obtained in

simulation. We shall use these results further on as reference for our hard-

4.6. A QUALITY DEGRADATION ALGEBRA 51

ware implementation of the two mechanisms.

For the emulation of order 3 networks we need a formal way to aggregate

these objects. In this section we propose a degradation emulation algebra,

as a bottom-up compositional approach, starting from basic elements that

are aggregated into more complex representations. An algebra is a formal

way of manipulating objects to obtain other objects with known properties.

We propose an algebra to combine models of order 0 and order 1 networks

into an equivalent model of order 3 networks built from these elements.

Sequences of degraders can thus be collapsed into a single degrader,

that is easier to implement and manipulate. Defining an algebra makes it

possible to recombine the elements due to properties of commutativity and

associativity, obtaining minimal equivalent representations. The conditions

under which such properties hold must be determined.

The degradation emulation algebra is defined over a set of two basic

degradation elements: queues and wires. A wire W (L,D) is an object that

introduces constant loss (L) and constant delay (D). The constant amount

of loss is given by the effective bit error rate (BER) characteristic for a

particular transmission medium. The constant delay is due to propagation

through the medium. However, the wire is just an abstract object which

exhibits deterministic known properties.

A queue Q(l, d) is an object that introduces variable loss (l) and variable

delay (d). The variable loss and delay depend on several parameters like the

length of the queue, the pattern of the input traffic, the distribution of the

service time etc.

W(L, D)

(l, d)Q

Figure 4.13: The wire and queue elements.

We denote the operation used to combine these elements by “◦”. This

is equivalent to cascading two elements. In this notation, a queue Q(l, d)

followed by a wire W (L,D) will be represented by Q(l, d) ◦W (L,D). In the

following relationships, one must determine L̂, D̂, l̂ and d̂:

W (L1, D1) ◦W (L2, D2) ⇔ W (L̂, D̂) (4.34)

Q(l1, d1) ◦Q(l2, d2) ⇔ Q(l̂, d̂) (4.35)

52 CHAPTER 4. EMULATION. THE MODELS

The relationships above will determine whether two element models of

the same type can be combined into a single one that has the same behaviour.

The next two equivalences are still to be validated:

Q(l, d) ◦W (L,D) ⇔ Q(l̂, d̂) (4.36)

W (L,D) ◦Q(l, d) ⇔ Q(l̂, d̂) (4.37)

We shall determine the conditions under which associativity and com-

mutativity of “◦” hold.

When two wires are concatenated, the propagation delays D1, D2 sum

up and the equivalent system is a wire for which the propagation delay D is

the sum D1 +D2:

D = D1 +D2 (4.38)

Using the same notations that were used for the temporal model descibed

in Section 4.2, the departure times are:

y(n) = x(n) +D1 +D2 (4.39)

Let’s assume that the loss percentage characteristic of the two wires are

L1 and L2. If M is the number of packet at the input of the first wire and

N is the number of packets that arrive at the output of second wire:

N = M(1− L1)(1− L2) (4.40)

= M(1− L1 − L2 + L1L2) (4.41)

= M −M(L1 + L2 − L1L2) (4.42)

Then the equivalent wire will be characterized by the loss percentage:

L = L1 + L2 − L1L2 (4.43)

The operation of concatenating wires is commutative, based on the com-

mutativity of sumation and multiplication.

For three concatenated wires, W1(L1, D1), W2(L2, D2), W3(L3, D3), the

delay characteristic of the equivalent system is:

D = D1 +D2 +D3 (4.44)

The departure times when N wires are concatenated is:

4.6. A QUALITY DEGRADATION ALGEBRA 53

y(n) = x(n) +

N∑
i=1

Di (4.45)

For the same M and N as above:

N = M(1− L1)(1− L2)(1− L3) (4.46)

= M(1− L1 − L2 − L3 + L1L2 + L1L3 + L2L3 − L1L2L3) (4.47)

= M −M(L1 + L2 − L1L2 − L1L3 − L2L3 + L1L2L3) (4.48)

Then the equivalent loss characteric is:

L = L1 + L2 − L1L2 − L1L3 − L2L3 + L1L2L3 (4.49)

When concatenating a queue and a wire, the wire is the one responsible

for the constant delay of the equivalent system. The delay distribution that

characterizes the queue will be shifted to the right, with the amount given

by the constant delay introduced by the wire.

The equivalent model is determined using the following formula:

y(n) = D1 + x(n) +

n∑
i=0

s1(i)−
n∑

i=1

x′(i) (4.50)

The resulting delay histogram is presented in Figure 4.14 (c).

Delay0
1D

(a) wire

Delay0 D2

(b) queue

Delay0 D1+ D2

(c) wire + queue

Figure 4.14: The delay histogram characteristics.

Using the temporal model described in Chapter 4 Section 4.2, one can

determine the vacancies of an equivalent server, in order to emulate two

queues:

54 CHAPTER 4. EMULATION. THE MODELS

S S
X Y Z

1 2

Figure 4.15: Two queues concatenated.

We shall assume the case of two infinite queues. The output of the first

queue can be expressed as:

y(n) = x(n) +
n∑

i=0

s1(i)−
n∑

i=1

x′(i) (4.51)

The output of the second queue can be expressed as:

z(n) = y(n) +

n∑
i=0

s2(i)−
n∑

i=1

y′(i) (4.52)

Then,

z(n) = y(n) +
n∑

i=0

s2(i)−
n∑

i=1

y′(i) (4.53)

= x(n) +
n∑

i=0

s1(i)−
n∑

i=1

x′(i) +
n∑

i=0

s2(i)−
n∑

i=1

y′(i) (4.54)

As:

y′(n) =

[
x(n) +

n∑
i=0

s1(i)−
n∑

i=1

x′(i)

]′
(4.55)

= [x(n)]′ +

[
n∑

i=0

s1(i)

]′
−

[
n∑

i=1

x′(i)

]′
(4.56)

= x′(n) + 0 +

n∑
i=2

x”(i) = x′(n) +
n∑

i=2

x”(i) (4.57)

The departure times for the equivalent system to the two concatenated

queues are:

z(n) = x(n) +

n∑
i=0

s1(i)−
n∑

i=1

x′(i) +
n∑

i=0

s2(i)− x′(n)−
n∑

i=2

x”(i) (4.58)

Chapter 5

An FPGA-based Emulator

This chapter describes the FPGA-based hardware platform we used and the

internal architecture of the network emulator, as well as the design process.

The advantages of a hardware implementation are emphasized, as well as

the benefits emerging from the use of a message passing paradigm and its

implementation in Handel-C.

5.1 Hardware vs. software implementation

One of the problems of the software network emulators is the lack of accu-

racy of the degradation they induce. Although the network applications are

usually not sensitive to a very precise delay, accurate timing is needed for

the correct emulation of effects depending of the packet sequential order.

Such an effect is the competition for the last available buffer between two

streams, the cause of packet loss. In any system, loss is the result of a critical

race for resources. The fact whether packet loss occurs or not at a certain

moment depends on the relative timing of the packets. Any shift in time

results in a different packet being dropped. Therefore, accurate emulation of

these effects is needed in order to get correct loss rates and distributions, a

mandatory feature of an emulator since they are crucial for the performance

of most applications. A hardware implementation, such as ours, ensures a

correct behavior regarding timing.

The network emulator is intended to sustain 1 Gb/s rates, which means a

packet rate of approximately 1.5 million packets per second, for the smallest

size Ethernet packets. This gives a worst-case processing time between two

consecutive packets of 0.67μs. In order to be able to sustain such a packet

rate and to benefit of enough processing time for each packet, a hardware

approach is mandatory. In a software approach, the packet arrival events

55

56 CHAPTER 5. AN FPGA-BASED EMULATOR

are not deterministic. This is because there is a variable delay between the

moment of time when the packet arrives at the network interface card and

the moment the packet data is delivered to the application level. This delay

depends on when the interruption from the network interface card occurs,

how fast the driver fetches the packet data over the PCI interface, and then

how fast the kernel copies the packet data to the user space. In hardware all

these uncertainties are eliminated, given that the packet data can be read

from the medium access controller (MAC) the moment when the start of

packet bit is set [59].

5.2 The hardware platform

Our implementation is based on a custom-design PCI platform [20] [21].

This hardware platform uses one Altera Stratix FPGA [53] with 25k logic

elements, two Gigabit Ethernet RJ45 ports and memory: 64 MB of syn-

chronous dynamic RAM (SDRAM) and 1 MB of synchronous static RAM

(SSRAM). The schematic is presented in Figure 5.1:

Figure 5.1: Schematic of the hardware platform.

The FPGA manages all the resources and contains the intellectual prop-

erties (IPs) for the two Ethernet MACs and the SDRAM and PCI con-

trollers. The user-defined higher-level functionality is implemented on the

same FPGA, using the Handel-C programming language [6]. A low-level

library written also in Handel-C is used to provide primitives for memory

and PCI access. The dual-port on-chip RAM blocks provided by the Stratix

5.3. IMPLEMENTATION PHILOSOPHY 57

FPGA are extensively used to implement queues between concurrent pro-

cesses.

The SDRAM is used to temporarily store packet data. The SSRAM is

used to store the configuration of the emulator. Packet data flows between

the two Gigabit Ethernet ports, allowing for the integration of the hardware

platform into a network. The board can be hosted by PCs that have a

standard 3V3 PCI connector, which facilitates the deployment. The PCI is

used to configure the application firmware and to collect statistics.

The whole system is driven at the PC level, by a Python-based control

system. This allows to create automated procedures for performing exper-

iments in a very simple and flexible manner. The low-level communication

with the hardware platform via PCI is performed through a custom Linux

kernel module [22].

5.3 Implementation philosophy

The emulator was implemented using the Handel-C language [6] from Celox-

ica1. Handel-C is hardware description language that has a syntax which is

similar to the syntax of ANSI2 C [7]. While ANSI C is a merely sequential

programming language, Handel-C offers the possibility of executing instruc-

tions in parallel. We chose Handel-C because it is readily accessible to

non-hardware specialists while at the same time offers constructs that al-

lowed us to use the natural parallelism of the hardware. Handel-C had been

employed in other networking applications at CERN [54].

Given its roots in CSP3 and occam4, Handel-C provides specific con-

structs for developing systems with concurrent processes.

The most obvious construct of use is the par, which allows for the paral-

lel execution of statements or complete processes. In practice every module

shown in Figure 5.3 runs as a process under a top-level par. The architec-

ture and the Handel-C have a one-to-one correspondence. Each arrow in

the diagram has a direct correspondence with a Handel-C channel in the

implementation.

Channel objects allow data to be communicated between processes. The

data transfer occurs only when both processes are ready and forces the syn-

1http://www.celoxica.com/
2American National Standards Institute.
3Communicating Sequential Processes, CSP, is a formal language used to describe

parallel systems created by C. A. R. Hoare in the early 1980s and described in [60].
4occam is a parallel processing language designed by a team at INMOS in conjunction

with the design of the transputer processor, and based on T. Hoare’s ideas of CSP.

58 CHAPTER 5. AN FPGA-BASED EMULATOR

chronization of parallel processes. Their existence proved especially useful

for several reasons. During the development phase, we could independently

debug and validate individual modules given that whatever logical or timing

changes happened as the result of an optimization, the module would still fit

back into the full design and communicate with its adjacent modules as be-

fore. If, in the worst case of a design error, there is some channel mismatch

then the whole system freezes and allows the debugger to retrieve state and

correct the error. This independent development is especially powerful when

one considers that for the full design a compile, place and route cycle is at

least half an hour.

Channels also resolve the problem of passing data across clock domain

boundaries. The design cannot avoid different clock domains since the PCI

interface requires a 33 MHz frequency clock and the MAC interface requires

a 25 MHz frequency clock. However having the facility to easily cross clock

domains meant that we could choose something close to the optimum fre-

quency for several different tasks. For example, the SDRAM server runs at

125 MHz and the main core at 62.5 MHz. Without this option we would

have been unable to meet the design requirements of the project. Again

however there are limits. The channel is a complex structure with up to

a four-cycle overhead which becomes the limit for very high speed trans-

fers. For the fastest transfer logic we needed to use an internal hardware

feature, the dual-port RAM, as shared memory between two clock domains.

The shared memory acts as a mailbox while the requests for transfer are

still sent over channels. This came at the cost of having to ensure the syn-

chronization with our own logic, an error-prone process that consumed a

considerable debugging time.

Although ordered and synchronous operations have clear advantages,

there are cases where data has to be retrieved as fast as possible—such as

the ingress from the MAC interfaces which must be cleared irrespective of

the state of the modules that will consume the data. We used queues in this

case to asynchronously accept the incoming data.

The use of multiple channels in each module lead to yet another problem:

the arbitration of the access to all these channels. Handel-C provides a solu-

tion by means of the prialt instruction. This instruction allows the channel

that is first ready to perform a transfer and it even works between different

clock domains. This instruction was used, for example, in the Packet Data

Storage module, to which “free reference” messages are addressed from more

sources (from Degradation Emulation Engine on packet discard, and from

the Packet Data Forwarder module on packet transmission).

In retrospect the choice of language for this project was fully justified. It

5.4. NETWORK EMULATOR ARCHITECTURE 59

allowed for a formal approach to the design process and we found that with

each iteration we moved further from the shared memory constructions and

closer to channel-based ones that facilitated both debugging and execution.

As we became more competent with using channels and CSP, the code we

wrote became smaller and simpler. This leads to the fact that maintenance

and modifications are also easier.

5.4 Network emulator architecture

The general architecture of a network emulator is depicted below (see Figure

5.2). The incoming traffic is classified in order to apply different quality

degradation to it. Then the experienced quality of each class of traffic gets

degraded in a system of queues, according to a degradation model. At the

output, packets are scheduled in order to be transmitted to the output port.

Classifier Degrader Scheduler

Figure 5.2: Basic network emulator architecture.

In our implementation, the Classifier allows the user to specify up to

16 classification rules. The classification can be performed based on the

information contained in the following fields from the packet headers: type

of service (ToS), the protocol number, source and destination IP addresses.

The input traffic can be classified in eight classes.

The Degrader maintains eight queues, one for each class of traffic. The

length of each queue can be configured by the user. The Scheduler can

implement any scheduling algorithm. We implemented two scheduling al-

gorithms, that are used in most of the Gigabit Ethernet switches: Strict

Priority and Weighted Round Robin.

The emulator system may be seen as a three-level architecture. At the

upper level, there is a user interface written in Python5. This Command

Line Interface (CLI) allows the user to configure the emulator and collect

statistics. The user can configure the fixed delay, the sizes of the queues,

specify the output rate and upload the classification criteria. The interme-

diate level is constituted by a Linux kernel module based on the IO RCC

5http://www.python.org/

60 CHAPTER 5. AN FPGA-BASED EMULATOR

[22] library developed at CERN, which is the interface between the high-

level Python routines and the FPGA. The communication takes place over

the PCI. At the lowest level of the system is the FPGA-based hardware

platform.

The network emulator is a packet processor, with a generic architecture

composed of a packet data path and a control path. This architecture was

inspired from the architecture of general-purpose processors, that comprise

a data path and a control path [41]. The detailed system architecture is

depicted in Figure 5.3. The communication channels between the mod-

ules are represented as arrows. The packet data path consists of a storage

block (the Packet Data Storage) and receiving/forwarding modules (i.e. the

Packet Data Receiver and the Packet Data Forwarder). The control path

(in shades of gray) processes the packet references (structures that allow

the identification of packet inside the system) by applying different kinds of

degradation, like dropping or delaying a packet. It also interacts with the

packet path and has the knowledge about the place where packets are stored

in memory. The modules of the control path can be easily replaced, due to

the channel-based emulator architecture, in order to change the functionality

of the hardware platform.

Figure 5.3: The emulator architecture: data (blue) and control (green) path.

The core of the emulator is depicted in Figure 5.4. The Degradation

Emulation Engine module maintains eight queues which are serviced in a

SP or WRR manner, user configurable. The maximum size of each queue

is of 128 packets. This hardware limit can be changed by allocating more

on-chip RAM and recompiling the design.

Each queue has a background traffic source associated with it. The

source can be started or stopped from the user interface, and the pattern of

5.5. MODULE DESCRIPTION 61

each background traffic source can be configured in real-time, by uploading

the descriptor tables on the on-chip RAM. The descriptor tables contain

information about the size of the background traffic packets and the inter-

packet gaps between them.

Figure 5.4: The core architecture.

In the next section, each module from the architecture presented in Fig-

ure 5.3 is briefly described.

5.5 Module Description

The MAC Receiver. This process provides packet data to the Packet

Data Receiver in chunks of 32 bit words. The MAC Receiver is configured

and controlled by the Packet Data Receiver. The Packet Data Receiver

starts reading 32-bit words from MAC Receiver when the Start of Packet

(SoP) event is generated, until the End of Packet Event (EoP) is detected.

The Packet Data Receiver also reads from the MAC Receiver the value of

the register indicating errors that may occur: CRC errors, alignment errors

etc. The MAC Receiver is an IP macro and the source code is not available.

Therefore its capabilities cannot be changed.

The Packet Data Receiver. This process manages the reception of com-

plete packets of data from the MAC interface. The technique used to retrieve

packets from MAC is polling. The Packet Data Receiver (PDR) maintains

two queues–one for storing full packet data and another one for maintaining

packet descriptors. If one packet is correctly received, a descriptor (contain-

ing the size of the packet and a value indicating how many bytes are valid

from the last 32-bit word) is placed in the descriptor queue.

62 CHAPTER 5. AN FPGA-BASED EMULATOR

The packet data queue is 32 bits wide and it has 4 K elements. The

descriptor queue is 11 bits wide (9 bits for the packet size expressed in

32-bit words + 2 bits for indicating the valid bytes) and it can host 128

descriptors.

As long as there are descriptors in the descriptor queue, the packets that

have been received are sent to the Packet Data Storage (PDS) module. A

memory address is received upon storage. This memory address is used to

construct a packet reference that uniquely identifies the stored packet. The

packet reference also contains the following fields from the packet header:

the protocol number, the Type Of Service (TOS), the source IP address

and the destination IP address. The packet reference is then sent to the

Classifier module.

The Packet Data Storage. This process manages the storage of com-

plete packets of data as received from the MAC interface. In parallel, the

address of the next available memory slot is calculated. The Packet Data

Storage maintains a bit map for indicating which memory slots are free and

which are occupied.

The packets are stored in the SDRAM. The available capacity (64 MB) is

divided in 32 K slots of 512 32-bit words. Once packets have been received

they can be either marked as free (usually as the result of some policing

action), or read out (some time later) and then marked as free–this would

be the normal outcome for packets that have passed through the degrader.

The Classifier. This process classifies packets based on the fields retained

from their header, which are received from the Packet Data Receiver. Once

packets have been classified, the corresponding packet reference and the id

specifying the degradation that will be applied are sent to the Degradation

Emulation Engine (DEE) module.

The Degradation Emulation Engine. This process emulates network

degradation as configured by external means. Upon receiving a packet refer-

ence and a degrader id, the process determines the appropriate queue id and

sends it along with the packet reference to Micro-flow Sequence Preservation

for enqueueing. Under certain conditions the decision to immediately free

the packet can be taken; in this case no enqueueing takes place. The next

queue to be serviced is indicated to Micro-flow Service by its id. A second

parallel process implements the rate limiting for the queues in the Micro-flow

Sequence Preservation. The rate for each queue can be configured.

5.5. MODULE DESCRIPTION 63

The Micro-flow Sequence Preservation. The Micro-flow Sequence Preser-

vation (MSP) module stores and manages in a FIFO manner (according to

queue id) the packet references received from the Degradation Emulation

Engine module. The Micro-flow Sequence Preservation module maintains

two queues–one for the traffic of interest (classified traffic) and one for the

unclassified traffic, which is serviced on a best effort basis. The size of each

queue can be configured. Upon reception of a queue id from the Micro-

flow Service module, a packet reference is dequeued from the corresponding

queue and returned to this module.

The Micro-flow Service. The Micro-flow Service (MS) module manages

the retrieval of packet references from Micro-flow Sequence Preservation

based on queue ids received from Degradation Emulation Engine. This is the

module that implements the scheduling scheme for the queues of the Micro-

flow Sequence Preservation module. The packet reference is subsequently

sent to Packet Data Forwarder.

The Fixed Delay. The Fixed Delay (FD) module introduces a constant

delay value, by enqueueing the descriptors in a queue. Each time a descriptor

is enqueued, the current time is read from a special register called the clock

register. A fixed amount, that can be specified in the user interface is added

to the time read from the clock register and the sum is also enqueued along

with the descriptor. At the output of the Fixed Delay queue a process reads

the timestamps and decides when to forward the next packet descriptor.

The Packet Data Forwarder. The Packet Data Forwarder (PDF) mod-

ule manages the transmission of complete packets to the MAC interface. It

maintains two queues–one for full packet data and another one for packet

descriptors. When a packet reference is received, the corresponding packet

is retrieved from the Packet Data Storage. Upon the retrieving of a packet,

a packet descriptor is placed in the descriptor queue.

As long as there are descriptors in the descriptor queues, a parallel pro-

cess empties the packet data queue. Once packets have been transmitted a

“free reference” message is sent to Packet Data Storage.

The MAC Forwarder. This process receives packet data from the Packet

Data Forwarder in chunks of 32-bit words. The MAC Forwarder is config-

ured and controlled by the Packet Data Forwarder. As for the MAC Re-

ceiver, the MAC Forwarder is also an IP macro and the source code is not

available. Therefore its capabilities cannot be changed.

64 CHAPTER 5. AN FPGA-BASED EMULATOR

5.6 Implementation details

In this section, some details regarding the memory management, the access

to SDRAM and the random number generation are given. These details

are intended to highlight the implementation choices that were made due to

constraints imposed by the usage of an FPGA. Complexity was traded for

fast implementation, as the 1 Gb/s operation requires a processing speed of

approximately 1.5 million packets per second.

Different-width mpram ports . Handel-C allows defining multi-ported

RAMs that have ports with different width. This feature was used to build

queues that have different widths for input and output. The declaration of

such a multi-ported RAM is presented below:

mpram {

wom <32> input[1024];

rom <64> output[512];

} qram;

This mpram has a write-only port (wom), representing the input of the

queue, and a read-only port (rom) representing the ouput of the queue. For

example, in PDR, one queue that has a 32-bit wide input and a 64-bit wide

output was used. 32-bit words read from the MAC core are enqueued and

then 64-bit words are dequeued in order to increase the bandwidth for the

communication with the next module, PDS. The only drawback would be

the word padding, which is needed for odd numbered queues, required one

clock cycle.

Pipelining. “Pipelining is an implementation technique whereby multiple

instructions are overlapped in execution” [17]. In Handel-C, a two-stage

pipeline can be easily implemented using the par statement, as follows:

unsigned 32 register;

read_one_word_from_MAC(register);

while(!end_of_packet)

par {

enqueue(register);

read_one_word_from_MAC(register);

}

enqueue(register);

On the first cycle, one word is read from the MAC and stored in the

variable called register. Then until the end of packet, the word previously

5.6. IMPLEMENTATION DETAILS 65

read is enqueued and another one is read from the MAC, in parallel. On

the last cycle, the last value of the register is enqueued.

Pipelining was used in various places in the emulator, for example in

PDR and PDF, to handle data to and from the MAC core. The 32-bit

words are read and in the same cycle enqueued in the input queue. Given

that each word must be read from the MAC on every cycle, and in the same

time enqueued, pipeline was mandatory.

The pipeline for the instructions in a general-purpose processor has to

be flushed in case of a jump instructions, which affects the performance.

In our design, this does not occur, so the same rate is maintained for the

statements that take place in parallel.

The Memory management. The SDRAM is divided in slots of 256 64-

bit words (2048 bytes). The address is determined as follows: the index of

the slot, multiplied by 256 is added to the base address. This mechanism

was preferred for its simplicity, which implies fast logic on the FPGA. The

main disadvantage is the poor utilization of the memory space, resulting

in internal fragmentation [40]. For example, a 64-byte packet will occupy

only 4 words in the 256 word slot, resulting in 99 % waste. A more efficient

algorithm could be used, in order to increase the memory space utilization.

For example one could divide the available space in two or more classes

of slots having different sizes. However, the memory management and the

computation of the memory address will have an increased complexity, that

will affect the performance.

A bitmap is maintained to determine the occupancy of each slot. One

process in Packet Data Storage is responsible to determine the address of the

next available slots. It implements the First Fit algorithm [40]. The total

amount of memory existing on the board (64 MB) allows for 32 k slots. This

means that for maximum Ethernet size (1518 bytes) packets a delay of 3.8 s

at Fast Ethernet operation or 380 ms at Gigabit Ethernet operation can be

emulated. For the minimum Ethernet size (64 bytes) packets the maximum

delay that can be emulated is 214 ms and 21 ms for Fast Ethernet and

Gigabit Ethernet, respectively.

The SDRAM access. The access to the SDRAM was implemented using

a Client/Server architecture, with one server and two clients. The architec-

ture is depicted in Figure 5.5.

The two clients (the read and write clients) use two dual-port on-chip

RAMs of 8 words, to temporarily store the data which is read/written

from/to the memory. Those dual-port RAMs are alternatively used in a

66 CHAPTER 5. AN FPGA-BASED EMULATOR

double-buffering algorithm to better interleave the read and write opera-

tions. The clients initiate a memory transfer by sending a read/write request

to the server. When a transfer finishes, the server send an acknowledgment

to the client that requested the transfer. The two SDRAM controllers are

configured to operate with burst of 8 words, the maximum available length

for a burst. Due to use of channels and the client/server architecture, the

SDRAM server is elegantly implemented in Handel-C.

8−word dpram

8−word dpram

8−word dpram

8−word dpram

READ request

response response

Data Data

PRIALT

CTRL #0 CTRL #1

SDRAM

Bank #0

SDRAM

Bank #1

Fast clock domain

WRITE request

Main clock domain Main clock domain

SDRAM SERVER

WRITE CLIENT READ CLIENT

Figure 5.5: The SDRAM server architecture.

The random number generation. The generation of random numbers

is a key element for any hardware implementation of stochastic algorithms.

The paper [4] contains a review of the existing hardware implementations of

random number generators (RNG). The most common type of RNGs used

in cryptography is the Linear Feedback Shift Register (LFSR) described in

[5]. The LFSR used in our network emulator was implemented as a macro

procedure in Handel-C:

macro proc rand(Variable) {

do {

Variable = (Variable<-21) @ (Variable[12] ^ Variable[30]) @ \\

(Variable[10:1]^Variable[29:20]);

} while (1);

}

5.7. IMPLEMENTATION VALIDATION 67

A feedback shift register consists of two parts: a shift register and a

feedback function. The feedback function for a LFSR is a exclusive or (XOR)

of certain bits in the register. Combining this uniformly distributed random

number generator with look-up tables in the on-chip RAM, it is possible to

implement any given distribution. The tables are loaded over the PCI with

values generated on the host PC.

5.7 Implementation validation

We performed various tests for the validation of our hardware network em-

ulator. We analyzed the performance of our implementation from several

points of view: memory fragmentation, the SDRAM access, achieved maxi-

mum packet rate as a function of packet size, as well as the performance of

the scheduling algorithm implementation.

Because of the use of slots of 2048 bytes, internal fragmentation of the

SDRAM memory occurs. Consequently, the average slot utilization is of

only 38.6 %. One optimization could be the use of different size slots, at

different base addresses. For example, if slots of 512 bytes would be used for

packets with sizes between 64 and 512 bytes, and 2048-byte slots for packet

sizes larger than 512 bytes, the average slot utilization would increase to

51.54 %. More complex memory allocation could be imagined, but this can

only be achieved to the detriment of execution speed.

The SDRAM controller can be configured to operate in two modes: burst

and page mode. Burst mode was preferred, so that the read and write oper-

ations can be interleaved. Operation interleave allows storing and retrieving

packet data to/from SDRAM, regardless of the size of packets. The use of a

larger transfer granularity such as page mode is more efficient from the point

of bandwidth utilization, but causes blocking between input and output that

is unacceptable.

The length of one burst can be 1, 2, 4 or 8 words. According to specifi-

cations of the SDRAM controller, the overhead for a write operation is of 4

cycles, while for read operations the overhead is 12 cycles. After the address

setup, it takes one cycle to read/write one word.

In our implementation, the SDRAM operations take place in bursts of

8 words. In Figure 5.6 the SDRAM bandwidth utilization is presented, for

8-word and 4-word burst length, as function of packet length. It is clear

that higher bandwidth utilization is obtained when the length of burst is 8

words. The ideal SDRAM bandwidth utilization would be achieved when

one cycle per word would be used for read or write operation.

68 CHAPTER 5. AN FPGA-BASED EMULATOR

(a) WRITE ops. (b) READ ops.

Figure 5.6: SDRAM bandwidth utilization for WRITE and READ ops.

For example, for a 65-byte packet, two write burst operations are needed–

one for storing 64 bytes and the second one to store the 65th byte. Because

another 8 words are written for only one more byte, the efficiency of the

operation drops to 51 % (see Figure 5.7).

We start now showing the results of a series of performance and valida-

tion tests. Our network emulator will be compared against another emulator

in order to demonstrate the realism of the our approach to network quality

degradation emulation. We propose a set of two tests to be performed for

comparison of the two emulators.

(a) (b)

Figure 5.7: The 8-word burst utilization and sustainable packet rate vs.

packet size.

Using the network tester described in [21], we experimentally determined

the performance of our hardware implementation from the point of view of

5.7. IMPLEMENTATION VALIDATION 69

the sustainable packet rate. In Figure 5.7 the sustainable rate expressed in

percentages of the 1 Gb/s line speed is presented as function of the packet

size. Note that for most packet sizes the implementation is capable to sus-

tain line speed. For packets smaller than 512 bytes, the performance is

usually larger than 85%, except for the 65-byte packets when the perfor-

mance droppes to approximately 73%.

This uneven performance is entirely due to the limitations of the inter-

face to the SDRAM memory, which represents the bottleneck of our system.

An increase in performance proportional to the increase of the frequency

of the SDRAM Server clock domain was observed. However, the overall

performance is satisfactory given that short bursts can be dealt with, de-

pending on the size of the internal queues of the emulator. The interface

to SDRAM can be further improved in order to achieve line speed even for

packets smaller than 500 bytes, if the SDRAM access would be redesigned.

However this only becomes an objective for production implementations.

We shall demonstrate that our approach to the emulation of network

quality degradation offers the possibility of reproducing realistic network

scenarios. For this, we propose two sets of tests that were peformed in order

to realize the comparison between our network emulator and a represen-

tative off-the-shelf emulator. The proposed tests are: (i) packet sequence

preservation, or out-of-order test, and (ii) delay auto-correlation test for

consecutive packets.

For comparison, we chose the NIST Net network emulator (see Chapter

2). We consider it to be representative for the currently existing network

emulators for two reasons: it is implemented in software, and it allows the

loss and the delay to be independently set.

We configured our emulator to limit the output rate at 10 Mb/s and

to classify all the input traffic into only one queue. The input traffic was

UDP, generated by an application running on a PC. The average load was

5 Mb/s and the traffic pattern constant bit rate. The same queue is shared

by the background traffic. One source of background traffic sent Poisson

traffic with negative exponential departure times, at an average load of 5

Mb/s. The background traffic was a mixture of 70% 64-byte packets, 15%

576-byte packets and 15% 1518-byte packets, representative for the Internet

traffic [61], [62].

In this scenario we measured the delay experienced by the application

foreground traffic. There was no loss during the experiments. The same

measured average of 14 ms and the same variance of 2.5 ms were set for the

delay to be introduced by the NIST Net network emulator; the same fore-

ground traffic was generated through NIST Net. The following observations

70 CHAPTER 5. AN FPGA-BASED EMULATOR

were made. When using NIST Net, the packets are re-ordered and the orig-

inal packet sequence is not preserved. This unrealistic reordering has strong

negative effects on application performance. In our network emulator, the

order of the packets at the output of the emulator is always the same with the

one at the input. The average delay auto-correlation for consecutive packets

measured for the delay traces obtained with NIST Net was smaller than the

same average measured on delay traces through our network emulator. This

happened consitently throughout several experiments. We conclude these

two tests show that the delay introduced by our network emulator has a

more realistic variation, with correlated consecutive values. The correlation

comes from the fact that the original packet order is preserved by means

of a queue. The variation of the delay is the natural consequence of the

competition between the foreground and the background traffic.

We conclude that the emulator is able to sustain line speed for most of

the packet sizes. Its performance is satisfactory given the 85% sustainable

rate for minimum size Ethernet packets. Comparing our network emulator

against the NIST Net network emulator showed that the quality degradation

introduced by our solution is more realistic, from two points of view: (i) the

preservation of original packet sequence; and (ii) the delay auto-correlation

for consecutive packets.

5.7.1 Scheduling algorithm performance assessment

We present the test results of our scheduling mechanisms implementation.

We show that our implementation of Strict Priority and Weighted Round

Robin scheduling algorithms is in accordance with the theoretical behaviour

of those mechanims.

The degradation induced by the scheduling mechanisms implemented in

the emulator was assessed. The setup we used for our experiments is shown

in Figure 5.8. With this apparatus we measured the quality degradation

experienced by different traffic flows when scheduling mechanisms are de-

ployed. We drove the system of queues inside the Degradation Emulation

module into saturation, which is the point where quality degradation occurs.

The traffic flows in our tests were generated by eight sources that send

packets to the same destination. All packets from a source have the same

priority, marked in the ToS field of the IP header. Priorities are distinct

between sources. The traffic we used to drive the system into saturation

was CBR or Poisson (i.e., traffic with a negative exponential inter-packet

gap distribution). The CBR traffic is in accordance with the recommended

Constant Load traffic for benchmarking Ethernet devices [23], which is a

5.7. IMPLEMENTATION VALIDATION 71

traffic with a constant inter-packet gap and a constant packet size. The

traffic was CBR, with 64-byte packets. It was classified based on the ToS

field from the IP header, according to the mapping presented in Figure 5.8.

(a) mapping

Priority

0

1

2

4

3

5

6

7

Source #0

Source #1

Source #2

Source #3

Source #4

Source #5

Source #6

Source #7

Destination

Network Emulator

Scheduling
Algorithm
Under Test

(b) setup

Figure 5.8: Scheduling mechanism test setup.

Our SP implementation behaves according to the ideal model presented

in Chapter 4. The tests were performed according to the methodology we

proposed in [36]. Results are presented in Figure 5.9. Note that the be-

haviour is the same as the expected one (see Figure 4.12). Our implemen-

tation of WRR works on a per-packet basis, i.e. the weights represent the

actual ratios between the number of packets service from the queues. In our

tests, the weights were: 4, 3, 2, and 1. The results are presented in Figure

5.9. Note that the behaviour is the same as the expected one (see Figure

4.12).

(a) SP (b) WRR

Figure 5.9: Received load as function of offered load.

72 CHAPTER 5. AN FPGA-BASED EMULATOR

Both scheduling algorithms behave in accordance with the theoretical

behaviour. This allows us to emulate in a realistic way order 2 networks

with up to eight classes of traffic.

Chapter 6

Application QoE assessment

In this chapter we present the results of several experiments that are aimed

at assessing application performance and QoE through the use of the net-

work emulator. For the assessment of application QoE, we analyze the be-

haviour of three representative and widely-used applications: web browsing,

VoIP and video streaming. The former uses the HTTP protocol, based on

TCP, therefore the traffic it generates is elastic, while the latter two have

an inelastic traffic, being based on UDP. The setup we developped and used

to assess the applications’ QoE is illustrated in Figure 1.4 and intimatelly

described in [35] and [64].

6.1 Web browsing

Web browsing is an HTTP-based application, characterized by short-lived

TCP transfers, which makes it very sensitive to packet loss. For emulation,

we used the approach of background traffic generation (see Section 3.2),

thus the traffic of interest (HTTP) competes with the background traffic

generated inside the Degradation Emulation Engine to occupy queue space

(which induces loss) and for being serviced (which induces delay) - see Figure

3.3. We compare two cases, when the background traffic source has a CBR

or a Poisson pattern. For all the tests, the emulator was configured to

introduce a fixed delay of 12.5 ms in each direction, equivalent to a 25 ms

RTT. The available bandwidth was limited to 10 Mb/s and the size of the

queue was 128 packets.

In the setup presented in Figure 1.4, the end PCs run Linux with ker-

nel 2.4.21, the HTTP server was Apache1 2.0 (httpd-2.0.46) and the client

was wget (wget-1.8.2), a non-interactive network retriever that allows the

1http://www.apache.org/

73

74 CHAPTER 6. APPLICATION QOE ASSESSMENT

automation of tests. The interconnection used Fast Ethernet, because the

taps used work at 100 Mb/s. For the Apache server all the parameters had

default values, including the Timeout2 of 300 s. The KeepAlive3 parameter

was “on” and “off” in turn. When “off”, a new TCP connection is open and

closed for each file transfer. This represents the most inefficient case. When

“on”, the same TCP connection is used for up to MaxKeepAliveRequests

= 100, separated by no more than KeepAliveTimeout = 15 s. The load

generated by the background traffic source was varied from 0 to 100% of the

available output rate, which was set to 10 Mbps.

We chose a representative web page to use in our tests, that contains

both images and text, consisting of 499 files, with a total size of 1.6 MB.

The average file size is approximately 3 kB, representative as the average

value of the file sizes on the Web [12]. For a test without loss, we measured

the instantaneous rate at the server, with an averaging interval of 0.1 s. We

noticed the resemblance between the histogram of instantaneous rate and

the histogram of file sizes: small files are sent at low rates, while larger files

are sent at higher rates, given the window-based rate control of TCP. The

KeepAlive was off for this test, so for each file to be transferred a new TCP

connection was initiated.

For the assessment of QoE for web browsing we measured the site down-

load duration [37]. The results in Figure 6.1 show the dependency of site

download duration on the offered background traffic load, for KeepAlive

“off” and “on”, respectively. Note that the influence of the CBR back-

ground traffic on the performance is not significant (the download duration

doubles from 0 to 100% background traffic load); the explanation is this

case is equivalent to a constant diminution of the bandwidth available for

the application. This is not important since the foreground traffic only uses

approximately 0.5% of the available capacity. When the background traffic

load approaches 100 %, there is a rapid increase of the download duration

followed by denial of service, leading to complete application failure.

When the background traffic is Poisson (thus more realistic) noticeable

performance degradation starts occurring from loads of 60 %. At loads

larger than 80 % the degradation becomes significant and reaches values

with more than one order of magnitude, compared to the CBR case. The

intrinsic burstiness of the Poisson traffic determines the different shape of the

graphic, and the fact that different Poisson distributions were used explains

the larger standard deviations of the results.

2Timeout: The number of seconds before receives and sends time out.
3KeepAlive: Whether or not to allow persistent connections (more than one request

per connection).

6.2. VOIP 75

(a) KA off (b) KA on

Figure 6.1: Site download duration vs. background traffic offered load.

One can observe the improvement of the site download duration by one

order of magnitude when the same TCP connection is maintained open for

the transfer of all the files of the site. Opening a TCP connection for each

file to be transferred required more time for each connection establishment,

and is affected more by loss (losing one control packet implies the setup

of a timer—usually of 3 seconds—while one data packet which is lost is

retransmitted after one RTT—usually in the order of tens of milliseconds).

Denial of service occurs when the background traffic rate exceeds 100 % of

the available bandwidth, leading to complete application failure.

For the representation of the results the loss and delay coordinates could

be used instead of the background traffic load. However, in the case of

TCP-based traffic like HTTP, the loss at network level is hidden by the re-

transmission mechanism to the application. It can be measured, for example

by means of taps, but the dependence of loss on the background traffic load

is not linear and therefore the graphs would be more difficult to interpret.

As for the delay, the variable delay induced in the emulator is of order of

hundreds of μs, compared to the fixed delay of 25 ms. Therefore a measure

like the average would not be conclusive.

6.2 VoIP

Wireless networks and VoIP applications are two major coordinates of the

telecommunications landscape. Wireless networks are used everywhere, from

home users to industrial applications. VoIP had a long adoption curve com-

pared to wireless networks, but it represents the present and future of the

76 CHAPTER 6. APPLICATION QOE ASSESSMENT

telephony systems. The idea of using IP technology for voice transport was

proposed in the 70s, though the routing technologies of that time had nei-

ther the capacity to support voice traffic nor the required quality of service

capabilities. The interest in the wide area packet-based voice technology

quickly shifted from the enterprise market to consumer VoIP applications

like Skype, where IP technology could provide cheap phone calls for those

who were interested in price rather than quality. In the enterprise space,

the focus shifted to local IP voice in the form of an IP PBX [65]. The

essential idea was to eliminate the separate, stand-alone PBX system that

had existed for almost 100 years and move the voice switching function on

to the LAN switch infrastructure, which can be wireless even. The wireless

VoIP has a major drawback: the lack of security [66]. Therefore encryption

should be used in order to protect the privacy of the VoIP calls. Encryption

introduces an additional computation that represents an overhead, leading

to a diminished bandwidth and increased delay that are not desirable for an

application [67].

Several metrics are widely-used for measuring QoE for VoIP applica-

tions. ITU has defined standards that allow an evaluation of the quality of

voice communication: MOS (Mean Opinion Score) [68], PSQM (Perceptual

Speech Quality Measure) [69], the E-Model [70], PAMS (Perceptual Analy-

sis/Measurement System) [71] and PESQ (Perceptual Evaluation of Speech

Quality) [72]. The first of them (MOS) was a subjective metric, but succes-

sive attempts have been made to define objective metrics as well. For our

experiments we used the PESQ score, which represents the most advanced

objective metric for measuring speech quality.

There exist several studies focused on the performance of a VoIP appli-

cation in wireless networks [38]. Our work aims at quantifying the cost of

enabling encryption for the wireless LAN, in terms of voice signal quality

drop. We experimentally determined the maximum number of VoIP connec-

tions that can be performed in parallel and the quality of the voice signal as

a function of the number of calls. The maximum quality levels are achieved

when the wireless LAN is not secured and those values will be considered

as reference. Our study makes it possible to determine the conditions for

which the wireless technology is suitable for VoIP telephony systems.

The experimental setup is depicted in Figure 6.2. It comprises three

computers: two for generating the VoIP traffic (left) and one to receive the

VoIP calls (right). The senders are equipped with two wireless network cards

of 54 Mbps and they talk to a wireless router (2.4 GHz-802.11g) with Fast-

Ethernet connections. The router is connected to the destination computer

by a UTP Fast Ethernet connection. All the computers have an alternative

6.2. VOIP 77

Fast Ethernet connection to a main switch, used to implement the so-called

control network, which is not depicted in Figure 6.2. This interface was

used to send/receive Linux commands/responses during the test, in order

to avoid loading the wireless interface with other traffic than VoIP and also

to have quick and reliable answers from the computers. In this way we

implemented a control network apart from the wireless network used for the

VoIP experiments.

All talkers send VoIP traffic using the UDP. The wireless router becomes

the bottleneck of our wireless network, when the router reaches the limits

of its hardware resources. For the tests we used a wave file recorded at 8

kHz with 8 bits per sample, resulting in a data rate of 64 kbps. This voice-

coding scheme is standardized in ITU Recommendation G.711 [56]. We

used a freeware VoIP application Speak Freely [73] v.7.6a for Linux which

sends voice data over the network using a certain encoding, and ensures

decoding and playback at the receiving end. The software implements a

series of codecs that are all available using the built-in protocol: G.711,

G.726, GSM, LPC, LPC-10, CELP. For the tests we used the G.711, G.726

[74], GSM [75] codecs: G.711 is the codec that needs the largest bandwidth

(64 kbps) and offers the best quality (maximum PESQ score of 4.5).

Figure 6.2: Experimental setup.

The testing procedure was automated, all the commands being sent from

a control PC via preconfigured ssh sessions, in order to avoid human inter-

action. At startup, there is only one VoIP call initiated, in the best quality

transmission conditions of the given test network. The control script runs

in a loop and with each iteration another 10 VoIP parallel calls are added.

One of the calls was sent with the Speak Freely application (automatic using

an audio file), the rest of the calls were emulated using home-made software

applications (by generating UDP traffic using the same packet size as the

codec we used G.711, G.726 or GSM). The call that was received with the

VoIP application was recorded in an audio file. The loop ends with a max-

imum of 1000 parallel VoIP calls. Each resulting wave file was compared

with the original one. For the software sound comparison we used the PESQ

(Perceptual Evaluation of Speech Quality) metric [72].

78 CHAPTER 6. APPLICATION QOE ASSESSMENT

The tests were repeated five times. The points of the plots depicted

below were obtained by averaging the results from these experiments. Once

configured, the parameters of the VoIP application, i.e. chosen codec, gen-

erated throughput, packet size and inter-packet time remained the same for

the entire duration of the particular test run. We compared the performance

of the VoIP application in five encryption scenarios, depending on the type

of the security enabled for the wireless network: no-encryption at all, WEP

64, WEP 128, WPA PSK AES and WPA PSK TKIP [13]. The results are

presented in Figure 6.3a. We can observe the differences regarding the max-

imum value of the PESQ score, values less that 4.5 for G.726 and GSM as a

consequence of the loss of information due to compression. We recommend

using the G.711 in order to obtain a maximum of quality of the audio signal.

We must take into consideration the fact that if we exceed 650 calls in par-

allel the quality problems will rise very fast. As an alternative, one can use

also the G.726 codec that has constant results (of maximum PESQ score)

until a number of 880 VoIP calls in parallel is reached. The codec with the

smallest data rate (from our experiment), GSM , has a constant evolution,

similar to G.726. The signal quality modifies only at the end of the testing

interval.

For the WEP64 encryption technique the maximum number of VoIP calls

at good quality can be 500 in the case of the G.711 codec, 750 for G.726 and

approximately 600 for GSM (Figure 6.3b). A good quality / number of users

ratio is provided by G.726 when using a WLAN with WEP64 encryption.

We observe the fact that although GSM codec has a much smaller data

rate than G.711 or G.726, it does not provide good results. It would be

expected to offer at least a result similar with G.726 or even better. WEP

128 encryption is not recommended for a network dedicated to VoIP calles,

because of the PESQ score values that are fall off rapidly compared to other

encryption standards (stronger encryption schemes have better results). A

reason for this conclusion is the large processing overhead. For the WEP

128 scenario, the maximum number of good-quality VoIP calls in both cases

is comprised between 400 and 450 regardless the codec (Figure 6.3 c.).

The codec that provides the best voice quality, G.711, in a WPA PSK

AES secured network allows a maximum of only 100-110 VoIP calls in par-

allel (Figure 6.3d.). In this case the combination best encryption best

quality of the audio signal produces the most unfavorable results regard-

ing the number of total VoIP calls in parallel on the same access point. A

possible solution is to use the same codec G.711 for the best audio quality

in conjunction with a WPA PSK TKIP encryption. In this way, we can

make a compromise between the quality of the audio signal, security and

6.2. VOIP 79

(a) unsec. (b) WEP 64 (c) WEP 128

(d) WPA PSK AES (e) WPA PSK TKIP

Figure 6.3: Codec comparison for the five encryption scenarios.

the maximum number of VoIP users in parallel. By using this solution we

can have an enhancement by four times the number of VoIP calls then when

use used the WPA PSK AES algorithm. In the WPA TKIP scenario, when

the G.726 codec is used, a maximum of 620 VoIP connections in parallel

with a good quality of the audio signal is achieved. In this case the GSM

codec does not provide a great performance because there are just 550 VoIP

calls in parallel (see Figure 6.3e.). As expected G.711 a great bandwidth

consumer (comparative to the other two codecs that we analyzed) does

not have an extraordinary performance, providing only 450 calls at a good

quality. The same codec used in a WEP64 and WEP128 encrypted network

provides almost similar results 500 and 450 calls in parallel, respectively.

The G.726 and GSM codecs have good performances with this type of en-

cryption compared to G.711. The two codecs used with the TKIP algorithm

offer almost the same number of VoIP calls in case of the AES encryption,

so we recommend that in practice to use the AES algorithm in order to have

the best security.

In Figure 6.4 we present the PESQ score as a function of the number

of parallel VoIP calls, for each of the three codecs and each of the five

80 CHAPTER 6. APPLICATION QOE ASSESSMENT

encryption scenarios.

(a) G711. (b) G726 (c) GSM

Figure 6.4: Encryption comparison for three audio codecs.

For the G.711 codec, the best ratio quality number of users is obtained

in the case of using an unsecured network, 610 VoIP calls with good and

very good audio quality of the speech. Between 610-640 calls we observe

a score that is satisfying for some users and from that point the quality is

unacceptable. The encryption offered by WPA PSK AES algorithm provides

the maximum security, but with the price of about 100 possible VoIP calls

in parallel. WPA PSK TKIP encryption represents a good alternative when

an optimum ratio between security and the number of users is desired, so

in this case we can have up to 450 VoIP calls in parallel at good quality on

the same access point. If we compare the TKIP and the AES technologies,

we observe that we can have up to four times more calls with TKIP. For the

WEP standards, the differences consist in only 100 calls (500 for WEP64

and 400 for WEP128).

For the G.726 codec the PESQ score starts from 3 because of the qual-

ity that is lost due to the coding process. The maximum performance is

reached in the case of using an unsecured network, with a number of 880

calls in parallel. The high security provided by the WPA PSK AES or TKIP

techniques allows for 560 respective 630 VoIP calls at good quality, due to

the small data rate of the codec. The WEP128 encryption mechanism is

not recommended in this case because it has a low performance (maximum

450 VoIP calls). This result comes from the fact that the 128 bits used for

encryption produce an important overhead. The WEP alternative on 64 bits

ensures 750 VoIP calls in parallel at good quality. Using the WEP64 algo-

rithm and G.726 we obtain a good solution if we need a minimum security

and a great number of VoIP calls.

6.3. MPEG-4 VIDEO STREAMING 81

GSM is the codec with a low transmission rate of just 13 kbps, but

unfortunately with a maximum PESQ score of approximately 2.6. The un-

secured network offers good results (800 calls). Between 800 and 1000 the

quality decreases, so the users are not satisfied with a PESQ score between 2

and 2.6. The WEP128 allows only 450 VoIP calls in parallel, while WEP64

gives us a maximum of 600 connections in parallel using the same router.

For the systems where security is a key factor is recommended to use the

WPA technology: approximately 500 users can have a VoIP call in paral-

lel at acceptable quality, both for AES and TKIP. The difference between

WEP64 (590 calls) and WPA (550 calls) is insignificant, so its recommended,

where the hardware supports, to use the WPA encryption standard. Despite

the smaller rate than G.726 (2.5 times), the GSM does not have the same

performances (or better), in the case of an encrypted network.

We experimentally determined the maximum number of good quality

VoIP calls that can be initiated in parallel in an encrypted wireless network.

The drop points in the curves representing the results clearly indicate the

exact moments when the congestion occurs in the experimental network.

Using our results one can configure a wireless network by choosing the ap-

propriate combination of codec / encryption algorithm in order to obtain

the desired maximum number of parallel VoIP calls at good or acceptable

quality.

6.3 MPEG-4 video streaming

Video streaming is a very demanding application in terms of network ser-

vices, due to its real-time characteristics. The amount of bandwidth it

requires depends on the compression rate, and implicitly on the quality of

the video signal. Video streaming also requires high reliability for the data

transfer between the streaming server and the client. The MPEG4 stan-

dards describe the most frequently used compression algorithms for video

sequences. The high compression rate MPEG-4 achieves reduces the re-

quired bandwidth for a video streaming application, which makes the appli-

cation vulnerable to any packet loss at network level. MPEG-4 is intended

to be the standard for videoconferencing quality at extremely low bit rates

(from a few to a few dozen of Kb/s) [14].

In case of an MPEG video-streaming application, the server packetizes

the MPEG stream in order to send it to the client that requested it. The

protocol used for the control of the streaming is RTSP (Real-time Streaming

4Motion Picture Experts Group, http://www.mpeg.org/

82 CHAPTER 6. APPLICATION QOE ASSESSMENT

Protocol) or RTP (Real-time Protocol). Details on the RTP payload for

MPEG-4 streams can be found in [24] and [25]. The transmission protocol

used by the application under study is User Datagram Protocol (UDP). UDP

traffic is an inelastic, i.e., the application doesn’t adjust its transmission

rate to network conditions. In addition, lost packets are not retransmitted.

Therefore, packet loss at network level will cause gaps in the MPEG video

stream.

The MPEG-4 streaming server used in our experiments was the Helix5

streaming server from Real Networks6. The free version has a limitation of

2 Mb/s for the output transmission rate. However, a quality equivalent to

that of VHS 7 videocassette only requires a transmission bit rate in the order

of 1.5 Mb/s [14]. The MPEG-4 client mpeg4ip8 was modified so that every

video frame that is rendered on screen is saved on disk as an individual

bitmap file. Based on these files, one can recreate the video sequence at

reception, as it would have been seen by a potential user. Using QoE metrics,

we then compute the user-perceived quality for those video sequences. What

follows is the correlation of the measured network quality degradation (QoS)

with the calculated QoE.

There are various metrics for the assessment of image and video quality

[76]: (i) full-reference or reference-based, when both the video sequence at

the transmitter and the video sequence at the receiver are available, then

the sequence at receiver is compared to the original sequence at transmitter;

(ii) no reference or without reference, when the video sequence at the trans-

mitter is not available, therefore only the video sequence at the receiver is

being analyzed; and (iii) reduced-reference [77] [78] which are based on the

sequence at the receiver and on some features extracted from the original

signal at the transmitter. This is the case of the fractal measures we propose

below.

For the quality assessment of an image or a video sequence, the metrics

can be also divided into subjective and objective. During the last decade,

several quality measures, both subjective and objective, have been proposed,

especially for the assessment of the quality of an image after lossy compres-

sion, image rendering on screen or for digital cinema [79]. Most of them

use models of the human visual system to express the image perception as

a specific pass band filter (to be more precise, a pass band filter for the

5https://helixcommunity.org/
6http://www.realnetworks.com/
7The acronym for Video Home System, a recording and playing standard for video

cassette recorders, developed by JVC and launched in 1976.
8http://mpeg4ip.sourceforge.net/

6.3. MPEG-4 VIDEO STREAMING 83

achromatic vision and a low pass filter for the chromatic one) [80]. In this

chapter we explore a well-known property of the human visual system, i.e.

to be sensitive to the visual complexity of the image. We use fractal features

[81] to estimate this complexity, relying on the hypothesis that the fractal

features are capable of characterizing the image complexity in its whole, i.e.

both the space-frequency complexity and the color content.

First, we propose two objective reference-based metrics [34] for the as-

sessment of the user-perceived quality for video streaming applications: the

number of dropped video frames (NDF) and the number of altered video

frames (NAF). NDF is computed as the difference between the number of

frames in the original video sequence at transmitter and the number of video

frames that are effectively rendered at receiver. NAF indicates how many

frames—from the ones received and rendered—are affected by impairments.

The most complex metrics are based on models of the human visual

system, but some of them are now classical signal fidelity metrics like the

signal-to-noise ration (SNR) and its variant peak SNR (PSNR), the mean

squared error (MSE) and root MSE (RMSE) which are simply distance

measures. These simple measures are unable to capture the degradation

of the video signal from a user perspective [82]. On the other hand, the

subjective video quality measurements are time consuming and must meet

complex requirements (see the ITU-T recommendations [26], [27], [28], [29])

regarding the conditions of the experiments, such as viewing distance and

room lighting. However, the objective metrics are usually preferred, because

they can be implemented as algorithms and are human-error free.

The Video Quality Experts Group (VQEG)9 is the main organization

dealing with the the perceptual quality of the video signal and they re-

ported on the existing metrics and measurement algorithms [32]. A survey

of video-quality metrics based on models of the human vision system can

be found in [83] and several no-reference blockiness metrics are studied and

compared in [33]. A state-of-the-art of the perceptual criteria for image

quality evaluation can be found in [84]. OPTICOM10 is the author of one

metric for video quality evaluation called “Perceptual Evaluation of Video

Quality” (PEVQ), which is a reference-based metric used to measure the

quality degradation in case of any video application running in mobile or

IP-based networks. The PEVQ Analyzer [85] measures several parameters

in order to characterize the degradation: brightness, contrast, PSNR, jerk-

iness, blur, blockiness etc. Some of the first articles that proposed quality

metrics inspired by the human perception [86] [87] drew also the attention

9http://www.vqeg.org
10http://www.opticom.de

84 CHAPTER 6. APPLICATION QOE ASSESSMENT

on some of the drawbacks of the MSE and the importance of subjective tests.

Among the unanimously-accepted metrics for the quantification of the user-

perceived degradation, the ones proposed by Winkler use image attributes

like sharpness and colorfulness [30] [31], [88]. In [89] the authors propose a

no-reference quality metric also based on the contrast, but taking into ac-

count the human perception and in [90] the hue feature is exploited. Wang

proposes in [91] a metric based on the structural similarity between the orig-

inal image and the degraded one. The structural similarity (SSIM) unifies in

its expression several aspects: the similarity of the local patch luminances,

contrast and structure. This metric was followed by a more complex one,

based on wavelets, as an extension of SSIM to the complex wavelet domain,

inspired by the pattern recognition capabilities of the human visual system

[92]. Together with Wang, Rajashekar is the author of one of the latest

image quality metric based on an adaptive spatio-chromatic signal decom-

position [93] [94]. The method constructs a set of spatio-chromatic function

basis for the approximation of several distortions due to changes in light-

ing, imaging and viewing conditions. Wavelets are also used by Chandler &

Hemami to develop a visual signal-to-noise ratio (VSNR) metric [95] based

on their recent psychophysical findings [96] [97] [98].

Most of the existing metrics for the video quality are used to quantify

the degradation introduced by the compression algorithm itself, as a conse-

quence of the reduced bit rate. We are interested in objectively assess the

degradation in video quality caused by the packet loss at network level [99].

In our experiments, we identified two kinds of degradation: (i) the degra-

dation that affects the sequence, i.e. the temporal component of the signal

and (ii) the degradation that affects the frames, i.e. the spatial component.

The degradation that affects the video frames (see Figure 6.6) is a mix-

ture of several impairments, including blockiness and occurrence of new

colors. The modifications of the image content reflect both in the color

histograms—a larger spread of the histogram due to the presence of new

colors—and the spectral representation of the luminance and chrominance

(high frequences due to blockiness, see [100]). Given all the above considera-

tions, metrics like blur, contrast, brightness and blockiness are not fully able

to reflect the degradation, thus they cannot be applied for such degraded

video frames. Metrics able to capture all the aspects of the degradation

that reflect the color spread—the amount of new colours occurring in the

degraded video frames would be more appropriate. We therefore consider

that the approaches based on on multiscale analysis and image complex-

ity are more adapted to the video quality assessment, because vision is a

complex process that integrates multiple aspects of an image: the spatial

6.3. MPEG-4 VIDEO STREAMING 85

frequencies and the topology, as well as the color.

Fractal analysis-based approaches offer the possibility to synthesize into

just one measure adapted to the human visual system, all the relevant fea-

tures for the quality of an image (e.g. colourfulness and sharpness) instead of

analyzing all image characteristics independently and then to find a way to

combine the intermediate results. Due to its multi-scale nature, the fractal

analysis is in accordance with the spirit of all multi-resolution wavelet-based

approaches mentioned before, which unfortunately work only for gray-scale

images. Therefore, one of the advantages of our approach would be the fact

that it also takes into account the colour information. In addition, the frac-

tal measures are invariant to any linear transformation like translation and

rotation.

In the experiments we performed, prior to the development of the em-

ulator presented in this book, we introduced artificial packet loss using the

NIST Net network emulator [15]. Packet loss was introduced in the server-

client direction, with values between 0 and 1 %. We ran the tests using

various MPEG-4 video sequences, “football” being a widely-used one. The

video sequences are 10 seconds long, with 250 frames, each of 320 × 240

pixel size. The average transmission rate was approximately 1 Mb/s. The

decreased number of altered frames, for loss rates exceeding 0.8 % (see Fig-

ure 6.5), is a consequence of the increased number of dropped video frames.

A possible explanation could be the fact that the severely degraded frames

are no longer rendered, so the number of dropped frames increases. By

putting together the two metrics, one can plot the total number of affected

frames (TNAF)—both dropped and altered—as a function of packet loss at

network level. The relatively monotonic increase of TNAF can be observed

in Figure 6.5.

(a) NDF (b) NAF (c) TNAF

Figure 6.5: The percentage of (a) dropped (b) altered and (c) total number

of affected video frames vs. packet loss.

86 CHAPTER 6. APPLICATION QOE ASSESSMENT

In Figure 6.5 one can observe that, for example, a 0.6% packet loss

causes 60% of the video frames to be affected. This shows how vulnerable

to packet loss an MPEG-4 video streaming application may be. Losing one

packet containing the information of an I (intra) frame from the MPEG-4

stream implies the degradation of all the following P (predictive) or B (bi-

directional predictive) frames. Altering the information of a P frame implies

only the degradation of another adjacent frame. Altered B frames do not

cause the degradation of other video frames.

Further on, we focus on the QoE assessment by fractal analysis means.

The color fractal dimension (CFD) and lacunarity are the two most-known

and widely-used fractal analysis tools. The fractal dimension characterizes

the complexity of a fractal set, by indicating how much space is filled, while

the lacunarity is a mass distribution function indicating how the space is

occupied [101]. These two fractal properties are successfully used to dis-

criminate between different structures exhibiting a fractal-like appearance

[102], [103], [104], for classification and segmentation, due to their invariance

to scale, rotation or translation.

In Figure 6.6 we present two video frames: one from the original video

sequence and the corresponding degraded video frames from the sequence

at the receiver, along with the pseudo-image representing the absolute dif-

ference between the former two. The computed colour fractal dimensions

are 3.14, 3.31 and 3.072, respectively. One can see that the larger fractal

dimension reflects the increased complexity of the degraded video frame.

The increased complexity comes from the blockiness effect, as well as from

the augmented color content.

(a) original CFD=3.14 (b) degraded CFD=3.31 (c) absolute CFD=3.072

Figure 6.6: Original video frame (a), corresponding degraded received video

frame (b) and absolute difference (c).

The corresponding lacunarity curves are depicted in Figure 6.7. One

can see that the curve for image 6.6(b) is placed highly above the curve

for the image 6.6(a) indicating a more lacunar and heterogeneous image.

6.3. MPEG-4 VIDEO STREAMING 87

Surprisingly enough, the difference image 6.6(c) has a very similar lacunarity

to the one of the original image, but the difference pseudo-image is more

lacunar than the original for small values of δ: δ ≤ 10—indicating that the

degradation mainly takes place in blocks of 8 × 8 pixels—while for larger

values of δ it is less lacunar—more uniform, clearly seen and justified by

the smaller variations of colours. The complexity revealed by the lacunarity

curves is in accordance with the fractal dimension: the original unaffected

video frame being a less lacunar image than the degraded one.

Because the lacunarity is a measure of how the space is occupied, we

present in Figure 6.7 the 3D histograms in the RGB colour space, as a

visual justification. One can see that the histogram of the degraded video

frame is more spread than the one of the original video frame, indicating a

more rich image from the point of view of its color content (see more details

in [100]).

(a) original (b) degraded (c) lacunarities

Figure 6.7: The 3D RGB histograms for the two video frames and the

corresponding lacunarity curves.

In Figure 6.8 we depict the block diagram that illustrates the use of the

color fractal dimension and lacunarity as video quality metrics in a reduced

reference scenario. At the source, the two fractal measures are computed

for each video frame and sent along with the coded video frames over the

network. At destination, the same fractal measures are computed for the

received video frames and compared with the references. Details about the

experimental setup are to be found in [34], [105], [64].

In Figure 6.9 one may see three type of degradation that occurs in our

tests: important or severe degradation (top 2 lines); less-affected frames

(middle) and special or green degraded frames (bottom). The difference

ΔCFD between the colour fractal dimension of the degraded and the orig-

inal corresponding video frame will be considerable for the first two images

that exhibit an important degradation—i.e almost the entire image is af-

fected by severe blockiness, and the scene cannot be understood. ΔCFD

88 CHAPTER 6. APPLICATION QOE ASSESSMENT

Figure 6.8: The block diagram.

will be small, but still positive for less affected images (the football players

may no longer be identifiable, but the rest of the scene is unchanged). For

the “green” images the colour fractal dimension is smaller than the one of

the corresponding original frames, therefore the ΔCFD will be negative.

In order to analyse the degradation in time, in Figure 6.10 the evolu-

tion of the color fractal dimension in time is depicted. One can see that

the original “football” sequence is characterized by a large variation in the

complexity of the image, due to the fact that the scene changes and also due

to the high dynamicity. Therefore the variation of the color fractal dimen-

sion due to degradation is almost insignificant. In addition, due to the lost

video frames, the two curves will get more and more desynchronized in time,

which makes the analysis more difficult. However, it is possible to create a

reference-based metric by using the color fractal dimension (note the grey

zones that indicate a slight increase of the fractal dimension due to quality

degradation at network level).

Figure 6.10: Color fractal dimension vs. time, original (thick line) and

received (thin line), for the “football” video sequence.

6.3. MPEG-4 VIDEO STREAMING 89

(a) CFD=3.14 (b) CFD=3.31 (c) CFD=3.07 (d) SSIM map

(e) CFD=2.99 (f) CFD=3.37 (g) CFD=3.02 (h) SSIM map

(i) CFD=2.80 (j) CFD=2.98 (k) CFD=2.69 (l) SSIM map

(m) CFD=3.22 (n) CFD=2.28 (o) CFD=2.97 (p) SSIM map

Figure 6.9: Original video frames (1st column) from the “football” sequence,

degraded frames exhibiting different levels of degradation (2nd column), ab-

solute differences (3rd column) and the SSIM map [91] (4th column).

(a) original video seq (b) degraded video seq

Figure 6.11: Colour lacunarity curves vs. time for the “football” sequence.

90 CHAPTER 6. APPLICATION QOE ASSESSMENT

One can note that for the original “football” video sequence the color

lacunarity has also an important variation (see Figure 6.11) from frame to

frame, but its values are comprised between 0 and 1.5. For the degraded

video sequence (b) we can see that the lacunarity skyrockets up to 3.0 for

the interval of video frames affected by important degradation (the first

interval market with grey). The less important degradation (the next grayed

intervals) can only be detected if we take as reference the lacunarity of

the original video sequence. In order to implement a no-reference metric,

lacunarity ≥ 1.5 can indicate the severe degradation.

Further on, we performed a comparison with the following metrics: SNR,

PSNR, MSE, SSIM and VSNR (see [100] for more details). For the com-

putation of the SSIM we used the Matlab code11 provided by the author of

the metric proposed in [91] and for VSNR the Matlab implementation avail-

able12 provided by the authors of [95]. For color images, the MSE, SNR and

PSNR metrics are often computed independently for the red, green and blue

(RGB) colour channels and averaged together in order to compute the final

distortion. We chose to compute these classical signal fidelity measures in

the RGB color space, to be consistent with the definition of the color fractal

approach, which was developed based on the RGB colour space.

We compute the difference ΔCFD between the colour fractal dimension

of the degraded video frame and the colour fractal dimension of the original

video frame, along with the metrics mentioned above. The values of ΔCFD

are very well correlated to SNR, PSNR and MSE, and well correlated to

VSNR, but they are not at all correlated to SSIM. However, for the minimum

visible degradation for which ΔCFD = 0.178 is small, the SSIM indicates

the largest similarity, as well as PSNR, and VSNR has also a large value. For

the largest visible degradation the VSNR well captures it, while SSIM does

not reach its minimum values. SSIM and VSNR were mainly used to assess

the quality degradation induced by the image compression algorithms, case

in which the image degradation is not as violent as in our experiments.

The original hypothesis was that the quality perceived is directly pro-

portional to the fractal complexity of an image. In order to validate from

a subjective point of view the approach we proposed for the assessment of

the video quality, we performed several subjective tests, on different video

frames from video sequences - sport videos of football matches, in particular.

The aim of the experiments was to prove that the complexity of colour frac-

tal images is in accordance with the human perception, therefore the color

fractal analysis-based tools are appropriate for the development of video

11http://www.ece.uwaterloo.ca/˜z70wang/research/ssim/
12http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html

6.3. MPEG-4 VIDEO STREAMING 91

streaming QoE metrics.

We ran our experiments on a set of 27 individuals, guided by the gen-

eral recommendations from [26]. In the experiment we used video frames—

original and degraded—from the standard test “football” video sequence.

Pairs of images were presented, thus the experiments were reference-based.

After presenting the minimum and the maximum degradation that may af-

fect the video frames, the individuals were asked to grade the perceived

degradation with a score comprised between 0 and 5, according to the levels

of degradation presented in Table 6.3, in accordance with the quality levels

specified by the ITU.

0 no degradation at all

1 imperceptible

2 perceptible, but not annoying

3 slightly annoying

4 annoying

5 very annoying

Table 6.1: Levels of video QoE.

We computed the mean opinion score and the standard deviation, σMOS ,

based on the 27 responses, as well as the colour fractal dimension (CFD)

and its variation, ΔCFD. The correlation coefficient between the MOS and

ΔCFD is 0.8523, if we exclude the green frames. Despite of the fact that

these results must be extended to a bigger image set, the approach creates

a new perspective on QoE assessment using the perception of color image

complexity. We conclude that the fractal dimension reflects the perceived

visual complexity of the degraded images, as long as the degradation is not

extreme and ΔCFD is not negative.

92 CHAPTER 6. APPLICATION QOE ASSESSMENT

Bibliography

[1] D. B. Ingham, G. D. Parrington, “Delayline - A wide-Area Network Emulation Tool”.

[2] L. Rizzom “Dummynet: a simple approach to the evaluation of network protocols”.

[3] I. Yeom, A. L. Narasimha Reddy, “ENDE: An End-to-end Network Delay Emulator”.

[4] P. Martin, “An Analysis of Random Number Generators for a Hardware Implementa-

tion of Genetic Programming using FPGAs and Handel-C”, Technical Report CSM-

358, January 2002.

[5] B. Schneier, “Applied Cryptography, Second Edition: Protocols, Algorithms, and

Source Code in C”, John Wiley & Sons, Inc., January 1996.

[6] Celoxica, “DK3.1 Handel-C Language Reference Manual”, Celoxica Limited, 2005.

[7] B. W. Kernighan, D. M. Ritchie, “The C Programming Language, Second Edition”,

Prentice Hall, Inc., 1988.

[8] Simena, http://www.simena.net/company.htm

[9] Anue, http://www.anuesystems.com/index.htm

[10] Empirix, http://www.empirix.com

[11] X. W. Huang, R. Sharma, S. Keshav, “The ENTRAPID Protocol Development En-

vironment”, Proceedings of IEEE INFOCOM’99, March 1999.

[12] M. F. Arlitt, C. L. Williamson, “Web Server Workload Characterization: The Search

for Invariants”, Proc. SIGMETRICS, Philadelphia, PA, USA, April, 1996.

[13] J. Geier, “Deploying Voice over Wireless LANs”, Cisco Press, Indianapolis, 2007.

[14] F. Fluckiger, “Understanding Network Multimedia–Applications and Technologies”,

ISBN 0-13-190992-4, Prentice Hall, 1995.

[15] National Institute of Standards and Technology, NIST Net network emulator,

http://www-x.antd.nist.gov/nistnet/

[16] M. Carson, D. Santay, “NIST Net - A Linux-based Network Emulation Tool”, to

appear in Computer Communication Review.

[17] D. A. Patterson, J. L. Hennessy, “Computer Architecture: A Quantitative Ap-

proach”, Morgan Kaufmann Publishers, Inc., 1990.

[18] A. O. Allen, “Probability, Statistics, and Queueing Theory with Computer Science

Applications”, 2nd edition, Academic Press, Inc., 1990.

[19] Shunra, “The Virtual Enterprise: Eliminating the risk of delivering distributed IT

services”, white paper, 2004.

93

94 BIBLIOGRAPHY

[20] M. Ciobotaru, M. Ivanovici, R. Beuran, S. Stancu - “Versatile FPGA-based Hardware

Platform for Gigabit Ethernet Applications” , 6th Annual Postgraduate Symposium,

Liverpool, UK, June 27-28, 2005.

[21] M. Ciobotaru, S. Stancu, M. LeVine, B. Martin - “GETB - A Gigabit Ethernet

Application Platform: its Use in the ATLAS TDAQ Network”, Real Time 2005,

Stockholm, Sweden, June 10, 2005.

[22] M. Joss, “IO RCC - A package for user level access to I/O resources on PCs and

compatible computers”, CERN, Technical report ATL-D-ES-0008, October, 2003.

[23] S. Bradner, “Benchmarking Terminology for Network Interconnection Devices”, RFC

1242, July 1991.

[24] D. Curet, E. Gouleau, S. Relier, C. Roux, P. Clement, G. Cherry, “RTP Payload

Format for MPEG-4 FlexMultiplexed Streams”, IETF draft, July, 2002

[25] J. van der Meer, D. Mackie, V. Swaminathan, D. Singer, P. Gentric, “Transport of

MPEG-4 Elementary Streams”, IETF draft, November, 2002.

[26] ITU-R Recommendation BT.500, “Subjective quality assessment methods of televi-

sion pictures”, ITU, 1998.

[27] ITU-T Recommendation P.910, “Subjective Video Quality Assessment Methods for

Multimedia Applications”, ITU, 1996.

[28] ITU-R Recommendation J.140, “Subjective assessment of picture quality in digital

cable television systems”, ITU, 1998.

[29] ITU-T Recommendation J.143, “User requirements for objective perceptual video

quality measurements in digital cable television”, ITU, 2000.

[30] S. Winkler, “Visual Fidelity and Perceived Quality: Towards Comprehensive Met-

rics”, Proc. SPIE Human Vision and Electronic Imaging, vol. 4299, pp. 114-125, San

Jose, California, January, 2001.

[31] S. Winkler, “Issues in Vision Modelling for Perceptual Video Quality Assessment”,

Signal Processing, vol. 78, no. 2, pp. 231-252, October, 1999.

[32] VQEG, “Final report from the Video Quality Experts Group on the validation of

objective models of video quality assessment”. Vision Models”, presentation, August,

1997.

[33] S. Winkler, A. Sharma, D. McNally, “Perceptual Video Quality and Blockiness Met-

rics for Multimedia Streaming Applications”, Proc. 4th International Symposium

on Wireless Personal Multimedia Communications, pp. 553-556, Aalbord, Denmark,

September, 2001.

[34] M. Ivanovici, “Objective Performance Evaluation for MPEG-4 Video Streaming Ap-

plications” , Scientific Bulletin of University ”POLTEHNICA” Bucharest, C Series

(Electrical Engineering), submitted for publication.

[35] M. Ivanovici, R. Beuran, N. Davies, “Assessing Application Performance in Degraded

Network Environments - an FPGA-based approach”, Communicating Process Archi-

tectures, Eindhoven, Netherlands, September 18-21, 2005.

[36] R. Beuran, M. Ivanovici, N. Davies, B. Dobinson, “Evaluation of the Delivery

QoS Characteristics of Gigabit Ethernet Switches” , CERN-OPEN-2005-002, CERN,

Geneva, Switzerland, December 2004.

BIBLIOGRAPHY 95

[37] R. Beuran, M. Ivanovici, V. Buzuloiu, “File Transfer Performance Evaluation” ,

Scientific Bulletin of University ”POLTEHNICA” Bucharest, C Series (Electrical

Engineering), vol. 66, no. 2-4, 2004, pp. 3-14.

[38] R. Beuran, M. Ivanovici, “User-Perceived Quality Assessment for VoIP Applications”,

technical report (delivered to U4EA Technologies), CERN-OPEN-2004-007, CERN,

Geneva, Switzerland, January 2004.

[39] R. Beuran, M. Ivanovici, B. Dobinson, N. Davies, P. Thompson, “Network Quality

of Service Measurement System for Application Requirements Evaluation” , Interna-

tional Symposium on Performance Evaluation of Computer and Telecommunication

Systems, July 20-24, 2003, Montreal, Canada, pp. 380-387.

[40] A. S. Tanenbaum, “Modern Operating Systems”, second edition, Prentice Hall, 2001.

[41] J. L. Hennessy, D. A. Patterson, “Computer Architecture: A Quantitative Ap-

proach”, second edition, Morgan Kaufman Publishers, Inc., 1996.

[42] IEEE 802, “IEEE Standard for Local and Metropolitan Area Net-

works: Overview and Architecture”, IEEE Computer Society,

http://standards.ieee.org/getieee802/802.html

[43] IEEE 802.3ae, “Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Access Method and Physical Layer Specifications”, IEEE Computer Society,

http://standards.ieee.org/getieee802/802.3.html

[44] H. J. Chao, X. Guo, “Quality of Service in High-Speed Networks”, John Wiley &

Sons, Inc., 2002.

[45] ITU-T Recommendation I.380, “Internet Protocol (IP) Data Communication

Service—IP Packet Transfer and Availability Performance Parameters”, ITU-T,

February, 1999.

[46] V. Paxson, G. Almes, J. Mahdavi, M. Mathis, “Framework for IP Performance Met-

rics”, IETF RFC 2330, May, 1998.

[47] G. Almes, S. Kalidindi, M. Zekauskas, “A One-way Delay Metric for IPPM”, IETF

RFC 2679, September, 1999.

[48] G. Almes, S. Kalidindi, M. Zekauskas, “A One-way Packet Loss Metric for IPPM”,

IETF RFC 2680, September, 1999.

[49] Oxford English Dictionary, the online version, http://www.oed.com.

[50] K. Korcyl, G. Sladowski, R. Beuran, R. W. Dobinson, C. Meirosu, M. Ivanovici, M.

L. Maia, “Network performance measurements as part of feasibility studies on moving

part of the ATLAS Event Filter to off-site Institutes” , First European Across Grids

Conference, Santiago de Compostela, Spain, February 2003.

[51] K. Korcyl, G. Sladowski, R. Beuran, R. W. Dobinson, C. Meirosu, M. Ivanovici, M.

L. Maia, “Network performance measurements for massive data transfers between

CERN Geneva and Cyfronet Cracow”, Cracow Grid Workshop, Cracow, Poland,

December 2002.

[52] C. Demichelis, P. Chimento, “IP Packet Delay Variation Metric for IP Performance

Metrics (IPPM)”, IETF RFC 3393, November 2002.

[53] Altera, “Stratix Device Handbook”, http://www.altera.com/literature/hb/stx/

stratix handbook.pdf

96 BIBLIOGRAPHY

[54] F. R. M. Barnes, R. Beuran, R.W. Dobinson, M.J. LeVine, B. Martin, J. Lokier, and

C. Meirosu, “Testing Ethernet Networks for the ATLAS Data Collection System”,

IEEE Trans. Nucl. Sci., Vol. 49, No. 2, April 2002, pp. 516-520.

[55] V. Servis, “Measuring speech quality over VoIP networks, The TOLLY Group, De-

cember 2001.

[56] ITU-T Recommendation G.711, Pulse Code Modulation (PCM) of voice frequencies,

ITU-T, 1993.

[57] W. Richard Stevens, “TCP/IP Illustrated, Volume 1. The Protocols”, Addison Wes-

ley, ISBN 0-201-63346-9, July 1997.

[58] L. B. James, A. W. Moore, M. Glick, “Structured errors in optical Gigabit Ethernet

Packets, PAM, Nice, April 2004.

[59] More than IP, “10/100/1000 Mbps Ethernet MAC Core with FIFO”, Release notes,

September 2003.

[60] C. A. R. Hoare, “Communicating Sequential Processes”, Prentice-Hall, 1985.

[61] K. Mochalski, J. Micheel, S. Donnelly, “Packet Delay and Loss at the Auckland

Internet Access Path”, PAM2002 Passive and Active Measurement Workshop, Fort

Collins, Colorado, USA, March 25-26th, 2002.

[62] J. Pongsiri, M. Parikh, M. Raspopovic, K. Chandra, “Visualization of Internet Traffic

Features”, Center for Advanced Computation and Telecommunications, University

of Massachusetts Lowell, http://morse.uml.edu/

[63] R. Beuran, “Introduction to Network Emulation”, Pan Stanford Publishing, 2013.

[64] M. Ivanovici, R. Beuran, “Correlating Quality of Experience and Quality of Service

for Network Applications”, in Quality of Service Architectures for Wireless Networks:

Performance Metrics and Management, pag. 326-351, IGI-Global, USA, 2010

[65] Asterisk Home Page, open source PBX, http://www.asterisk.org/

[66] Price Waterhouse Coopers Home Page, Information security breaches survey 2006 -

technical report, http://www.pwc.co.uk/

[67] D. Collins, “Carrier Grade Voice Over IP Second Edition”, McGraw-Hill, 2004

[68] ITU-T Recommendation P.800, “Methods for subjective determination of transmis-

sion quality”, ITU-T, August 1996.

[69] ITU-T Recommendation P.861, “Objective quality measurement of telephone-band

(300-3400 Hz) speech codecs”, ITU-T, February 1998.

[70] ITU-T Recommendation G.107, “The E-model, a computational model for use in

transmission planning”, ITU-T, May 2000.

[71] Malden Electronics Ltd., “PAMS A Perceptual Analysis/Measurement System”,

http://www.malden.co.uk/products/dsla/pams.htm.

[72] ITU-T Recommendation P.862, “Perceptual evaluation of speech quality (PESQ), an

objective method for end to end speech quality assessment of narrow-band telephone

networks and codecs”, ITU-T, February 2001.

[73] B. C. Wiles, J. Walker, Speak Freely VoIP application, http://www.speakfreely.org.

[74] ITU-T Recommendation G.726, “40, 32, 24, 16 kbit/s Adaptive Differential Pulse

Code Modulation (ADPCM)”, ITU-T, 1990.

BIBLIOGRAPHY 97

[75] M. Rahnema, “Overview of the GSM system and protocol architecture”, IEEE Com-

munications Magazine, 1993.

[76] C. Fernandez-Maloigne, “Fundamental Study for Evaluating Image Quality”, Annual

Meeting of TTLA, ITRI, Taiwan (invited paper), December 2008.

[77] T. Yamada, Y. Miyamoto, M. Serizawa, H. Harasaki, “Reduced-Reference based

Video Quality Metrics using Representative-Luminance Values”, Image Communica-

tion, vol. 24, no. 7, pag. 525-547, August 2009.

[78] T. Oelbaum, K. Diepold, “Building a Reduced Reference Video Quality Metric with

Very Low Overhead using Multivariate Data Analysis”, The 4th International Con-

ference on Cybernetics and Information Technologies, Systems and Applications:

CITSA 2007.

[79] C. Fernandez-Maloigne, M.C. Larabi, G. Anciaux, “Comparison of subjective assess-

ment protocols for digital cinema applications”, plenary talk, QoMEX First Interna-

tional Workshop on Quality of Multimedia Experience, San Diego, USA, 2009.

[80] V. Rossell, M.C. Larabi, G. Anciaux, C. Fernandez-Maloigne, “Objective Quality

Measurement Based on Anisotropic Contrast Perception”, 4th European conference

on Color in Graphics, Imaging and Vision, June 2008.

[81] M. Ivanovici, “Color and Multispectral Texture Image Analysis - Models, Features

and Applications”, Transilvania University printing house, 2015.

[82] Z. Wang, A.C. Bovik, “Mean Squared Error: Love It or Leave It?”, IEEE Signal

Processing Magazine, pag. 98-117, January 2009.

[83] C. J. van den Branden Lambrecht, “Survey of Image and Video Quality Metrics based

on Vision Models”, presentation, August 1997.

[84] T. N. Pappas, R. J. Safranek, J. Chen, “Perceptual Criteria for Image Quality Evalu-

ation” in Handbook of Image and Video Processing, 2nd ed., pag. 669-686, Academic

Press, 2000.

[85] OPTICOM GmbH Germany, “PEVQ - Advanced Perceptual Evaluation of Video

Quality”, white paper, 2005.

[86] P.C. Teo, D.J. Heeger, “Perceptual Image Distortion”, Proceedings of the IEEE

International Conference of Image Processing, pag. 982-986, 1994.

[87] S.A. Karunasekera, N.G. Kingsbury, “A Distortion Measure for Blocking Artifacts in

Images Based on Human Visual Sensitivity”, IEEE Transactions on Image Process-

ing, vol. 4, no. 6, pag. 713-724, June 1995.

[88] S. Winkler, “Digital Video Quality - vision models and metrics”, John Wiley & Sons,

Ltd., 2005.

[89] B. Bringier, N. Richard, M.C. Larabi, C. Fernandez-Maloigne, “No-Reference Per-

ceptual Quality Assessment of Colour Image”, 14th European Signal Processing Con-

ference (EUSIPCO), Florence, Italy, September 4-8, 2006.

[90] L. Quintard, M.C. Larabi, C. Fernandez-Maloigne, “No-Reference Metric Based on

the Hue Feature: Application to Quality Assessment of Color Displays”, 4th Euro-

pean conference on Color in Graphics, Imaging and Vision, June 2008.

[91] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, “Image Quality Assessment:

From Error Visibility to Structural Similarity”, IEEE Transactions on Image Pro-

cessing, vol. 13, no. 4, pag. 600-612, April 2004.

98 BIBLIOGRAPHY

[92] M. H. Sampat, Z. Wang, S. Gupta, A.C. Bovik, M.K. Markey, “Complex Wavelet

Structural Similariy: A New Image Similarity Index”, IEEE Transactions on Image

Processing, vol. 18, no. 11, pag. 2385-2401, November 2009.

[93] U. Rajashekar, Z. Wang, E.P. Simoncelli, “Quantifying Color Image Distortions based

on Adaptive Spatio-Chromatic Signal Decompositions”, IEEE International Confer-

ence on Image Processing (ICIP), Cairo, Egypt, November 2009.

[94] U. Rajashekar, Z. Wang, E.P. Simoncelli, “Perceptual Quality Assessment of Color

Images using Adaptive Signal Representation”, Human Vision and Electronic Imag-

ing XV, Proc. of the IS& T/SPIE Annual Symposium on Electronic Imaging, vol.

7527, San Jose, California, 2010.

[95] D.M. Chandler, S.S. Hemami, “VSNR: AWavelet-Based Visual Signal-to-Noise Ratio

for Natural Images”, IEEE Transactions on Image Processing, vol. 16, no. 9, pag.

2284-2298, September 2007.

[96] D.M. Chandler, S.S. Hemami, “Effects of natural images on the detectability of simple

and compound wavelet subband quantization distortions”, Journal of the Optical

Society of America, vol. 20, no. 7, pag. 1164-1180, July 2003.

[97] D.M. Chandler, S.S. Hemami, “Suprathreshold image compression based on contrast

allocation ang global precedence”, SPIE Human Vision and Electronic Imaging VIII,

Santa Clara, CA, 2003.

[98] D.M. Chandler, S.S. Hemami, “Effects of spatial correlation and global precedence on

the visual fidelity of distorted images”, SPIE Human Vision and Electronic Imaging

XI, San Jose, CA, 2006.

[99] M. Malkowski, D. Claßen, “Performance of Video Telephony Services in UMTS using

Live Measurements and Network Emulation”, Wireless Personal Communications

Journal, September 2007.

[100] M. Ivanovici, N. Richard, C. Fernandez-Maloigne, “Towards Video Quality Metrics

Based on Colour Fractal Geometry”, Journal of Image and Video Processing, Hindawi

Publishing Corp., January 2010.

[101] C.R. Tolle, T.R. Mc Junkin, D.T. Rohrbaugh, R.A. LaViolette, “Lacunarity defini-

tion for ramified data sets based on optimal cover”, Physical D, vol. 179, no. 3, pag.

129-15, 2003.

[102] W.S. Chen, S.Y. Yuan, H. Hsiao, C.M. Hsieh, “Algorithms to estimating fractal

dimension of textured images”, IEEE International conferences on Acoustics, Speech

and Signal Processing (ICASSP), vol. 3, pag. 1541-1544, May 2001.

[103] W.L. Lee, Y.C. Chen, K.S. Hsieh, “Ultrasonic liver tissues classification by fractal

feature vector based on M-band wavelet transform”, IEEE Transactions on Medical

Imaging, vol. 22, pag. 382-392, 2003.

[104] G.W. Frazer, M.A. Wulder, K.O. Niemann, “Simulation and quantification of the

fine-scale spatial pattern and heterogeneity of forest canopy structure : a lacunarity

-based method designed for analysis of continuous canopy heights”, Forest ecology

and management, vol. 214, pag. 65-90, 2005.

[105] M. Ivanovici, R. Beuran, “User-Perceived Quality Assessment for Multimedia Ap-

plications”, The 10th International Conference on Optimization of Electrical and

Electronic Equipment (OPTIM), vol. IV, pag. 55-60, 18-19 May 2006.

	Cover1
	Ivanovici_cartea1_bundetipar_B5
	Backcover1

